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Abstract

Identifying and monitoring HIV clusters could be useful in tracking the leading edge of HIV transmission in
epidemics. Currently, greater specificity in the definition of HIV clusters is needed to reduce confusion in the
interpretation of HIV clustering results. We address sampling density as one of the key aspects of HIV cluster
analysis. The proportion of viral sequences in clusters was estimated at sampling densities from 1.0% to 70%. A
set of 1,248 HIV-1C env gp120 V1C5 sequences from a single community in Botswana was utilized in
simulation studies. Matching numbers of HIV-1C V1C5 sequences from the LANL HIV Database were used as
comparators. HIV clusters were identified by phylogenetic inference under bootstrapped maximum likelihood
and pairwise distance cut-offs. Sampling density below 10% was associated with stochastic HIV clustering with
broad confidence intervals. HIV clustering increased linearly at sampling density > 10%, and was accompanied
by narrowing confidence intervals. Patterns of HIV clustering were similar at bootstrap thresholds 0.7 to 1.0, but
the extent of HIV clustering decreased with higher bootstrap thresholds. The origin of sampling (local con-
centrated vs. scattered global) had a substantial impact on HIV clustering at sampling densities ‡ 10%. Pairwise
distances at 10% were estimated as a threshold for cluster analysis of HIV-1 V1C5 sequences. The node
bootstrap support distribution provided additional evidence for 10% sampling density as the threshold for HIV
cluster analysis. The detectability of HIV clusters is substantially affected by sampling density. A minimal
genotyping density of 10% and sampling density of 50–70% are suggested for HIV-1 V1C5 cluster analysis.

Introduction

Analysis of HIV clusters could provide valuable in-
formation for understanding the structure and dynamics

of HIV transmission networks.1–20 However, there is confu-
sion surrounding HIV clustering due to differences in sam-
pling, methodological approaches, and interpretation of
HIV clustering results across studies. Issues that still need to
be resolved through dedicated studies, meta-analyses, and
comprehensive reviews include the following: What is the
definition of an HIV cluster? What is the epidemiological and
biological meaning of ‘‘HIV cluster’’? Does HIV clustering
differ by the route of virus transmission? Does clustering
imply HIV transmission between members of the cluster?
What is the clinical or public health relevance of HIV clus-
ters? How and why does HIV clustering differ between
studies? What are the best methods for HIV cluster analysis?

In this article we address how HIV clustering might be
affected by sampling of viral sequences. Specifically, we

focus on sampling density as one of the key aspects in HIV
cluster analysis.

Studies with relatively high sampling density have pro-
vided important insights into the dynamics of HIV trans-
mission networks, and have demonstrated the significant
extent of HIV clustering.3,5,7,11–15,20 While HIV clustering
patterns have been well characterized among men who have
sex with men (MSM),7–11,13–22 the structure and dynamics
of heterosexual HIV transmission networks in sub-Saharan
Africa are understudied.12,23–27 High sampling density in lo-
cal communities has been associated with a higher extent of
HIV clustering.23 Studies with low sampling density showed
minimal HIV clustering.28

It is not likely that viral sequence data from HIV preven-
tion studies can ever completely represent the population of
interest. In a recent study we focused on adjusting for missing
data obtained through a household survey in Mochudi,
Botswana (described below). This subset of HIV-1C V1C5
sequences represented 24.4% sampling density and used the
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pairwise distances threshold for HIV cluster definition.29 We
investigated the linkage rate across groups defined by viral
load (low/high) and antiretroviral treatment (ART) status,
and estimated the probability that a sequence from one group
links to at least one sequence from another group. We dem-
onstrated that the extent of linkage decreases as the sample
proportions decrease and proposed a method for adjusting for
missing data that, in simulation studies, greatly reduced the
bias resulting from having incomplete observations.29

In this study we focused on relationships between the ex-
tent of HIV clustering and sampling density, used a larger set
of HIV-1C V1C5 sequences that represents 70% sampling
density, and used a nonparametric bootstrap support under
the maximum likelihood (ML) method for HIV cluster def-
inition. We estimated the proportion of viral sequences in
clusters across the range of sampling coverage, from 1.0% to
70%, in a series of simulation studies. In addition to the set of
HIV-1 subtype C env gp120 V1C5 sequences sampled from a
single community in Botswana, we used a matching number
of HIV-1C V1C5 sequences retrieved from the LANL HIV
Database (www.hiv.lanl.gov/) to serve as a comparator in the
simulation studies. We also assessed the effect of the pairwise
distance threshold on the definition of clusters for HIV-1
V1C5 sequences.

While the interpretation of bootstrap support in a phylo-
genetic tree might depend on multiple factors, most experts
agree that bootstrap proportions can be used as a rough sta-
tistical estimate for a node, given the data.30–38 In this study
we used the bootstrap support of splits as a technique to test
the relative stability of groups within a phylogenetic tree39

and to estimate the statistical support of monophyletic clades
(subtrees, viral lineages, clusters) in phylogenetic trees in-
ferred by the ML method.

Materials and Methods

Definition of sampling density

Sampling density was estimated as the proportion of
genotyped viral sequences in the estimated number of HIV-
infected individuals residing in a given geographic area. The
HIV prevalence rate and the total number of residents of the
targeted community were used to estimate the number of
HIV-infected individuals.

HIV-1C sequences from Mochudi, Botswana

In this study we utilized HIV-1C env gp120 V1C5 se-
quences obtained from residents of the northeast sector
(NES) of Mochudi, a periurban village in Botswana. The total
population of the NES of Mochudi is 15,000 based on 2011
Botswana census data,40 with 8,700 estimated to be 16 to 64
years old. The total number of HIV-infected individuals in
this age range in the NES of Mochudi was estimated at 1,731
based on the 19.9% prevalence rate of HIV-1 infection esti-
mated during the recent Mochudi Prevention Project.23 The
total number of HIV-1C genotypes that originated from the
NES of Mochudi was 1,248, which corresponds to a geno-
typing coverage, or sampling density, of 72.1% (95% CI
69.9% to 74.2%). The accession numbers of the 813 Mochudi
sequences are AF443076–AF443078, AF443087, KF373801,
KF373812–KF373815, KF373823, KF373824, KF373826,
KF373830, KF373836, KF373841, KF373843, KF373850,

KF373851, KF373858–KF373861, KF373863–KF373865,
KF373872, KF373877, KF373880, KF373883, KF373887,
KF373890, KF373891, KF373893, KF373894–KF374041,
KF374043–KF374217, KF374219–KF374265, KF374267–
KF374314, KF374316–KF374615, and KF374617–KF374678.
The accession numbers of the 435 new Mochudi sequences are
KM190236–KM190670.

HIV-1C sequences from the LANL HIV database

A total of 2,442 HIV-1C env gp120 V1C5 sequences were
retrieved from the LANL HIV Database. The criteria for
sequence selection included HIV-1 subtype C, single se-
quence per subject, and a length ‡ 1,000 bp within the tar-
geted V1C5 region, HXB2 nt positions 6,570 to 7,757. After
removing duplicates, infant sequences from mother–infant
pairs, and known sequences from Mochudi, the LANL set of
HIV-1C V1C5 sequences comprised 1,407 sequences used in
the simulation studies. The 1,407 HIV-1C V1C5 sequences
used in this study included 778 sequences from South Africa,
168 from Malawi, 98 from Zambia, 86 from India, 63 from
Botswana, 54 from Tanzania, 33 from China, 22 from Zim-
babwe, 14 from Cyprus, and fewer than 10 sequences from 30
other countries. A list of HIV-1C V1C5 sequences from the
LANL HIV Database used in this study is presented in
Supplementary Table S1 (Supplementary Data are available
online at www.liebertpub.com/aid).

Phylogenetic inference

The phylogenetic relatedness among HIV-1C env gp120
V1C5 sequences was estimated by bootstrapped ML analy-
sis41 implemented in MEGA6.42 The GTR +G+ I, the gen-
eral time-reversible substitution model with a gamma
distribution of among-sites rate variation (a-shape parameter
at 0.60) and invariant sites ( pinv at 0.05), was determined by
MEGA642 as the best-fit model of nucleotide substitution for
the analyzed V1C5 region. The bootstrap support of splits,
which is known to be an effective technique to test the rela-
tive stability of groups within a phylogenetic tree,39 was used
as statistical support of monophyletic clades (subtrees, viral
lineages, clusters). The number of replicates in each run was
100. Four bootstrap values, ‡ 0.7, ‡ 0.8, ‡ 0.9, and 1.0, were
used as thresholds for identification of distinct viral lineages.
The proportion of V1C5 sequences in clusters was analyzed
by ClusterPicker43 using matching MLGTR +G + I trees at
bootstrap support of ‡ 0.80 over the range of pairwise dis-
tance thresholds for cluster identification from 1% to 15%.

Simulation studies

Potential associations between sampling density and pro-
portion of clustered HIV-1C env gp120 V1C5 sequences
were assessed in simulation studies. Randomly selected se-
quences represented sampling densities from 1% to 70%.
Multiple replicates were used for sampling density from 1%
to 50%, while single subsets represented sampling densities
at 60% and 70%. Supplementary Table S2 outlines 16 subsets
of V1C5 sequences with the number of sequences, percent
sampling density, and number of replicates per each subset.
The proportion of viral sequences in clusters was estimated
for each subset using bootstrapped ML inference, as de-
scribed above. The percent of sampling density was applied
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only to the Mochudi set of 1,248 sequences as the total
number of HIV-infected individuals in this community was
estimated based on HIV prevalence23 and 2011 Botswana
census data.40 It was not possible to apply sampling density to
the set of 1,407 non-Mochudi sequences retrieved from the
LANL HIV Database, as the total number of HIV-infected
individuals in the regions sampled remained unknown.

Statistical analysis

All confidence intervals of estimated proportions are as-
ymptotic 95% binomial confidence intervals (95% CI). p-
values less than 0.05 were considered statistically significant
and all hypothesis tests were two-sided. Statistical analysis
was performed using R version 3.0.1, and plots and histo-
grams were produced in R. All figures were finalized in
Adobe Illustrator CS6.

Results

To address whether the extent of HIV clustering depends
on sampling density, the proportion of HIV sequences in
clusters was estimated using random sets of sequences orig-
inating from a single community. The replicated sets of V1C5
sequences were randomly selected from the total of 1,248
V1C5 sequences originating from Mochudi, Botswana. The
size of each sequence set corresponded to the following 16
sampling densities: 1.0%, 1.5%, 2.0%, 3.0%, 4.0%, 5.0%,
7.5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, and 70%
(Supplementary Table S2). There were 20 replicates for each
sampling density for the two smallest subsets (1.0% and
1.5%) and 10 replicates for each of the next 12 sampling
densities (from 2.0% to 50%). The largest sampling densities
of 60% and 70% were represented by single subsets. The
proportion of HIV sequences in clusters was estimated within
each subset by the bootstrapped ML analysis41 using
MEGA642 and 100 replicates. Four bootstrap thresholds,
‡ 0.7, 0.8, ‡ 0.9, and 1.0, were used for identification of se-
quences in clusters.

HIV clustering depends on sampling density
and bootstrap support

The extent of HIV clustering positively correlated with
sampling density. Figure 1 shows how HIV clustering
changes with the increase of sampling density. We note the
difference in the shape of the curves for sampling densities
below 7.5% compared to those of 10% and above. HIV
clustering at low sampling density below 7.5% is quite var-
iable, with broad confidence intervals of clustering rates. The
confidence intervals of HIV clustering narrow as sampling
density increases. Starting at 10% sampling density, HIV
clustering demonstrates steady linear increase up to 70%
sampling density.

At the bootstrap threshold of ‡ 0.7, 18.4% (95% CI 16.5%
to 20.4%) of V1C5 sequences were found in clusters at
sampling density 10%. At the same bootstrap support of
‡ 0.7, the proportion of clustered V1C5 sequences increased
to 32.9% (95% CI 31.8% to 34.0%) at sampling density 50%
and reached 36.8% at sampling density 70%. At the bootstrap
threshold of ‡ 0.8, the proportion of HIV-1C sequences in
clusters increased from 14.4% (95% CI 13.2% to 15.6%) at
10% sampling density to 29.5% (95% CI 28.6% to 30.5%) at
50% sampling density and to 33.5% at 70% sampling density.

The patterns of HIV clustering were similar at bootstrap
thresholds from ‡ 0.7 to 1.0 in Fig. 1A–D. As expected, the
extent of HIV clustering decreased with tighter bootstrap
thresholds. The study was not able to address patterns of HIV
clustering above 70% sampling density as the number of
available HIV-1C env gp120 V1C5 sequences was 1,248,
which corresponded to an estimated 72.1% of sampling cov-
erage in Mochudi.

Impact of sampling origin on HIV clustering

To evaluate the impact of sampling origin on HIV clus-
tering, a concentrated sampling from a local epidemic was
compared with scattered sampling from a global epidemic.
Specifically, the proportions of viral sequences in clusters
were assessed and compared between two sets of HIV-1C env
gp120 V1C5 sequences representing concentrated local and
scattered global sampling. The first set of 1,248 HIV-1C
V1C5 sequences originating from a single community, Mo-
chudi, represented local concentrated sampling (the Mochudi
set). The second set of 1,407 V1C5 sequences retrieved from
the HIV LANL Database represented scattered sampling
from the HIV-1C epidemic (the LANL set). The LANL set
was filtered for Mochudi sequences as well as duplicates and
known mother-infant pairs. The Mochudi set of V1C5 se-
quences covered sampling density from 1.0% to 70% (see the
previous section). The randomly selected V1C5 sequences
in the LANL set matched the number of sequences in the
Mochudi set and the number of replicates per set.

The simulation studies demonstrate that origin of sampling
has a substantial impact on HIV clustering (Fig. 2). Little to
no difference in HIV clustering was observed between con-
centrated and scattered sampling for small subsets of V1C5
sequences corresponding to local sampling density below
7.5%. This observation is not surprising due to lack of trend
in rates of clustering at sampling rates below 7.5%. However,
after reaching the threshold of about 10% sampling density
(of local sampling), the proportion of V1C5 sequences in
clusters linearly increased in sets of V1C5 sequences re-
presenting local sampling but remained low for all matching
sets of V1C5 sequences originating from scattered global
sampling. The difference in the proportion of V1C5 sequences
in clusters between concentrated local and scattered global
sampling increased gradually with expanding sampling den-
sity. Thus, the same number of V1C5 sequences can be as-
sociated with different degrees of HIV clustering depending on
whether viral sequence sampling originates from a single
community or represents scattered sampling from a global
epidemic.

HIV clustering is associated with pairwise
distance threshold

Patterns of HIV clustering at different sampling densities
were analyzed in the context of pairwise distances used for
identification of clusters. Specifically, we addressed how the
interaction between level of sampling density and the
threshold of pairwise distance affects the proportion of V1C5
sequences in clusters. The subsets of randomly generated
V1C5 sequences originating in Mochudi were analyzed by
ClusterPicker43 using matching MLGTR + G + I trees. The
sampling densities spanned a range from 1% to 70%. The
proportion of V1C5 sequences in clusters was estimated at
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bootstrap support of ‡ 0.80. The pairwise distance thresholds
ranged from 1% to 15%.

The proportion of V1C5 sequences in clusters depended
on the threshold of pairwise distances (Fig. 3). At low levels
of sampling density (below 3%) HIV clustering was highly
uncertain, the confidence intervals for clustering were broad,
and the effect of pairwise distance threshold was unclear. An
increase of sampling density in the range between 3% and
10% resulted in narrowing confidence intervals of HIV clus-
tering and the appearance of a sigmoid, or S-shaped curve,
indicating a potential association between pairwise distance
threshold and HIV clustering. Finally, at sampling densities
of 10% and above, the association between pairwise dis-
tances and HIV clustering became more clearly defined and

formed a well-shaped S-curve reflecting substantially re-
duced confidence intervals of HIV clustering.

The proportion of V1C5 sequences in clusters gradually
increased between the 2% and 10% thresholds of pairwise
distances and reached a plateau at the 10% threshold of pair-
wise distances. Thus, in our settings 10% may be considered a
reasonable threshold of pairwise distances for cluster analysis
using the HIV-1 env gp120 V1C5 region.

The observed patterns of HIV clustering and dynamics of
confidence intervals provide additional evidence that the
threshold of sampling density at 10% might be necessary (if
not sufficient) for reliable HIV cluster analysis and suggest
that higher sampling density might be associated with a more
accurate estimation of HIV sequences in clusters.

FIG. 1. Sampling density and HIV clustering of HIV-1 V1C5 sequences from Mochudi, Botswana. Simulation analysis
was based on bootstrapped MLGTR +G + I with 100 replicates. Axis y shows the proportion of HIV-1C V1C5 sequences in
clusters. Axis x shows the sampling density from 1% to 70%. Subsets of V1C5 sequences corresponding to the specified
sampling densities were randomly selected from a total of 1,248 HIV-1C V1C5 sequences from Mochudi (estimated
sampling coverage of 72.1%). There were 20 replicates for the sampling densities 1% and 1.5%, 10 replicates for each of the
sampling densities from 2% to 50%, and single sets for sampling densities 60% and 70%. Each graph corresponds to the
specified bootstrap threshold for cluster definition: (A) ‡ 0.70, (B) ‡ 0.80, (C) ‡ 0.90, and (D) 1.0. Scatterplots and boxplots
outline clustering results at sampling densities from 1% to 50%, while single values are presented for sampling densities
60% and 70%. The curves connect mean values at each sampling density.
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Sampling density affects node bootstrap
support distribution

The distribution of node bootstrap support could enable a
better understanding of patterns of HIV clustering. We ad-
dressed whether sampling density is associated with node
bootstrap support distribution and focused on bootstrap val-
ues between 0.7 and 1.0 as the most informative fragment of
node bootstrap support distribution (Fig. 4). At low sampling

density, below 10%, the node bootstrap support distribution
was scattered, varied between replicates, and did not show
any clear pattern. In contrast, the proportion of nodes with the
extreme bootstrap support of 1.0 gradually increased over
sampling densities of 10% and above.

Analysis of node bootstrap support distribution provides ad-
ditional evidence for considering 10% sampling density to be a
reasonable threshold for HIV cluster analysis and suggests clearer
patterns of HIV clustering at sampling densities of 50% to 70%.

FIG. 2. Origin of sampling and HIV clustering. Simulation analysis based on 1,248 HIV-1C V1C5 sequences from Mochudi
and 1,407 HIV-1C V1C5 non-Mochudi sequences from the LANL HIV Database. Axis y shows the proportion of HIV-1C
V1C5 sequences in clusters. Axis x shows the number of V1C5 sequences per set, which corresponds to sampling densities
from 1% to 70% in the Mochudi set (please note that the number of 1,212 sequences corresponds to 70% sampling density in
Mochudi). The number of V1C5 sequences and the number of replicates (as described in Fig. 1 and in Supplementary Table
S2) in the simulation analysis were matched between Mochudi and non-Mochudi sets of V1C5 sequences. Each graph
corresponds to the specified bootstrap threshold for cluster definition: (A) ‡ 0.70, (B) ‡ 0.80, (C) ‡ 0.90, and (D) 1.0. Curves
connect mean values between subsets. Error bars depict 95% confidence intervals (95% CI for the two largest sets of 1,039 and
1,212 sequences were estimated by one-sample proportions test with continuity correction, while 95% CI for all other sets of
sequences were estimated by using simulation results with 10 to 20 replicates of randomly selected sequences).
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Discussion

Sampling density is a critical component in epidemiolog-
ical and molecular epidemiological studies addressing HIV
transmission dynamics. While there is general agreement
about the need for high sampling density in HIV transmission
studies, there is no consensus on the required level of sam-
pling density, as aims and goals vary between studies. The
level of sampling, the way in which sampling is actually
performed (e.g., population based, by convenience), and the
presence of unintended missing data (e.g., samples that
cannot be genotyped) are serious concerns, as sampling
density never reaches 100%.

Monitoring of virus spread in local HIV transmission
networks could inform HIV preventive interventions and

facilitate the design of targeted prevention strategies.
Knowledge of patterns of HIV spread within and across
communities could help in optimizing and balancing HIV
preventive strategies, such as Treatment-as-Prevention and
Pre-Exposure Prophylaxis.

In this study we address the relationships between sam-
pling density and HIV clustering, a topic closely related to
analysis of HIV transmission networks. We utilized two sets
of HIV-1C env gp120 V1C5 sequences, samples originating
from a single southern African community and sequences
retrieved from the LANL HIV Database. Through a series of
simulations, we demonstrated the way in which sampling
density impacts the extent of HIV clustering and, in one
context, found a minimal level of sampling density necessary
for assessment of HIV-1C V1C5 clustering.

FIG. 3. Pairwise distances and HIV clustering. Results of the simulation analysis based on bootstrapped MLGTR +G+ I with
100 replicates and bootstrap threshold of ‡ 0.80 using 1,248 HIV-1C V1C5 sequences from Mochudi are presented. Clusters
were identified and enumerated by ClusterPicker.43 Axis y shows the proportion of HIV-1C V1C5 sequences in clusters.
Axis x shows the pairwise distance thresholds for cluster identification from 1% to 15%. Sampling densities from 1% to
70% are shown in the upper left corner of each graph. For sampling densities 1% to 50%, boxplots summarize the estimated
proportions of V1C5 sequences in clusters at different thresholds of pairwise distances using 10 to 20 replicates of randomly
selected sequences. For sampling densities 60% and 70% points show mean values and error bars correspond to 95% CI for
each pairwise distance threshold.
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Sampling density below 10% was associated with quite
variable HIV-1 V1C5 clustering accompanied by broad
confidence intervals indicating high variance among repli-
cates. At a level of sampling density around 1%, the pro-
portion of HIV-1C V1C5 sequences in clusters fluctuated
from 0% to more than 50%, suggesting a substantial impact
of chance (of sample selection) on HIV clustering. Ob-
viously, the results of HIV clustering at low sampling density
are not reliable. This finding suggests that studies using
sampling densities below 10% in contexts similar to ours do
not provide adequate power to assess HIV-1C V1C5 clus-
tering and could produce misleading results.

Increasing sampling densities at values over 10% were
associated with increasing proportions of HIV-1C V1C5 se-
quences in clusters. The association appeared to be fairly
linear up to the analyzed level of 70% sampling density.
Higher sampling densities are associated with narrower
confidence intervals and apparently more accurate cluster-
ing results, reflecting the increasing amount of information

available for such analyses. This observation provides a ra-
tionale for targeting high sampling density in HIV transmis-
sion studies and favoring fewer communities with high
sampling density over a larger number of communities with
low sampling density—recognizing that such a design does
not permit generalization to other communities.

The current analysis is based on genotyping of the HIV-1C
env gp120 V1C5 region. However, it is likely that HIV
clustering might be affected by the targeted HIV-1 gene(s)
and/or the length of viral sequences used for genotyping,
which warrants further studies.

The origin of sampling was closely associated with sam-
pling density and has a similar impact on the extent of HIV
clustering. A concentrated sampling from a local epidemic
produces different patterns of HIV clustering than scattered
sampling across a global epidemic. This is not surprising as
even the thousands of HIV-1C V1C5 sequences used in sim-
ulation analysis in this study correspond to a very low sam-
pling density in the global HIV-1C epidemic. For example, the

FIG. 4. Node bootstrap support distribution. The 16 graphs depict the distribution of nodes bootstrap support values for
sampling densities from 1% to 70% (shown in the upper left corner of each graph). The distribution of bootstrap node
support is shown only for the 0.7 to 1.0 part of distribution for clarity (axis x). Axis y shows the proportion of nodes with
specified bootstrap support. For sampling densities 1% to 50%, boxplots (one boxplot per bootstrap value from 0.7 to 1.0)
summarize the estimated proportions of nodes with specified bootstrap support using 10 to 20 replicates of randomly
selected sequences. For sampling densities 60% and 70% histograms show the distribution of nodes bootstrap support.
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largest country-specific set retrieved from the LANL HIV
Database was 778 HIV-1C V1C5 sequences from South
Africa, which corresponds to 0.013% sampling density based
on UNAIDS estimates of 6,100,000 HIV infections in South
Africa.44,45 However averaging across the country estimates
might make little sense because viral sequences deposited to
the LANL HIV Database are likely sampled by a limited
number of studies within selected geographic areas, and it
might not be possible to infer accurate sampling density for
deposited sequences retrospectively.

Time of sampling seems to be another critical factor af-
fecting the detectability of HIV clusters. Due to the intrahost
evolution of HIV-1, a short time of sampling might be con-
sidered ideal. However, the sampling time in most molecular
epidemiological studies with cross-sectional sampling re-
mains unknown because the time of HIV infection is rarely
available. Development of methods for the estimation and
adjustment for sampling time could improve HIV cluster
analysis in future studies.

Thresholds of pairwise distances and bootstrap support of
nodes have similarly predictable impacts on the extent of
HIV-1 V1C5 clustering. Many previous studies utilized
available viral sequences of pol generated as a part of routine
clinical care and monitoring of HIV-associated drug resis-
tance. Due to low diversity in HIV-1 pol, the thresholds for
HIV cluster analysis were established in the range between
1% and 4.5%.1,5,7–9,13,14,46–48 However, the V1C5 region
used in this study is substantially more diverse than pol. Thus,
it seemed important to estimate the reasonable threshold of
the V1C5 region for HIV cluster analysis. Results of our
simulation studies suggest that for the V1C5 region, a 10%
cut-off of pairwise distances might be a useful threshold for
analysis of HIV clustering. Tightening this threshold results
in a fast elimination of viral sequences from clusters due to
high diversity of the HIV-1 env gene, particularly the V1C5
region. It is likely that the V1C5 threshold is associated with
stages of HIV infection, and if so, it needs to be estimated for
recent infections in future studies with appropriate sampling.

The node support distribution suggests that the bootstrap
support increases with expanding sampling density. The
profiles of node bootstrap distribution across different sam-
pling densities provided additional evidence that 10% sam-
pling density is the minimal threshold for analysis of HIV-1
V1C5 clustering. The most upright boxplots (or histogram
bins for sampling densities 60% and 70%) in Fig. 4 highlight
bootstrap support of 1.0. The gradual steady increase of the
strongest bootstrap support along increased sampling density
might explain the higher extent of HIV clustering at increased
sampling densities.

In summary, sampling density has a direct and substantial
impact on HIV-1C V1C5 clustering. The results of simula-
tion studies in this study suggest that the minimal level of
sampling density for HIV-1C V1C5 clusters analysis should
be above 10%, although this threshold could differ by sam-
pling origin and/or targeted region of HIV-1 genome. The
extent of sampling density may help in choosing an optimal
method of HIV cluster analysis. Thus, a local sampling with
density ‡ 10% should allow HIV-1C V1C5 cluster analysis
using phylogenetic inference. In contrast, using pairwise
distance thresholds might be more appropriate for global
scattered sampling with low sampling density.
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