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Abstract

To improve the methodology of HIV cluster analysis, we addressed how analysis of HIV clustering is associated
with parameters that can affect the outcome of viral clustering. The extent of HIV clustering and tree certainty
was compared between 401 HIV-1C near full-length genome sequences and subgenomic regions retrieved from
the LANL HIV Database. Sliding window analysis was based on 99 windows of 1,000 bp and 45 windows of
2,000 bp. Potential associations between the extent of HIV clustering and sequence length and the number of
variable and informative sites were evaluated. The near full-length genome HIV sequences showed the highest
extent of HIV clustering and the highest tree certainty. At the bootstrap threshold of 0.80 in maximum
likelihood (ML) analysis, 58.9% of near full-length HIV-1C sequences but only 15.5% of partial pol sequences
(ViroSeq) were found in clusters. Among HIV-1 structural genes, pol showed the highest extent of clustering
(38.9% at a bootstrap threshold of 0.80), although it was significantly lower than in the near full-length genome
sequences. The extent of HIV clustering was significantly higher for sliding windows of 2,000 bp than 1,000 bp.
We found a strong association between the sequence length and proportion of HIV sequences in clusters, and a
moderate association between the number of variable and informative sites and the proportion of HIV se-
quences in clusters. In HIV cluster analysis, the extent of detectable HIV clustering is directly associated with
the length of viral sequences used, as well as the number of variable and informative sites. Near full-length
genome sequences could provide the most informative HIV cluster analysis. Selected subgenomic regions with
a high extent of HIV clustering and high tree certainty could also be considered as a second choice.

Introduction

A major goal of public health in relation to HIV/
AIDS is to prevent new transmissions in com-

munities. Achievement of this goal could be facilitated by a
better understanding of the structure and dynamics of HIV
transmission networks and comprehensive HIV cluster
analysis.1–20 The extent of viral clustering is one of the key
factors in making inferences about epidemiologic processes
inferred from viral phylogenies. However, it remains to be
established how the selection of region across the HIV-1
genome and its length affects the extent of HIV clustering.

It seems likely that the size, complexity, and number of
variable or informative sites in the multiple sequence align-
ment are important factors that impact the extent of HIV
clustering. The nature of this effect could help inform the

choice of design in studies employing HIV cluster analysis. It
could also help in making choices regarding how subjects are
sampled, requirements for laboratory facilities, duration of
studies, and budget.

The contribution of different regions across the HIV-1
genome to the reconstruction of viral phylogeny has been
addressed previously. Leitner et al. highlighted the impor-
tance of the choice of the HIV-1 gene fragment for recon-
struction of true phylogeny, and showed that combining data
on gag p17 and env V3 performed better than data on either
p17 or V3 evaluated separately.21 The HIV-1 pol gene has
been used for phylogenetic reconstruction of transmis-
sion events22 and for HIV cluster analysis over the past
decade.3–7,9,11–13,15,19,20,23–32 Other HIV-1 genes have also
been used for linkage analysis in discordant couples.33,34 A
weaker clustering of subgenomic regions, as compared with
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the near full-length genome sequences, was demonstrated for
HIV-1C from Ethiopia,35 although the set of viral sequences
analyzed was relatively small.

The majority of studies cited above were performed in
HIV-1 subtype B settings among men having sex with men
(MSM). Most of the studies utilized partial HIV-1 pol se-
quences generated as a part of routine clinical care. However,
little is known about clustering patterns of HIV-1 non-B
subtypes in predominantly heterosexual epidemics, such as
the HIV-1 subtype C epidemic in southern Africa.

In this study we address (1) the HIV clustering in structural
viral genes, subgenomic regions, and near full-length ge-
nomes of HIV-1C; (2) the HIV clustering within sliding
windows across the HIV-1C genome; and (3) potential as-
sociations between the extent of HIV clustering and sequence
length. HIV clusters were identified by the bootstrapped
maximum likelihood method at bootstrap thresholds from 0.7
to 1.0, as a statistical support for clustering.

Tree certainty, a novel measure for quantification of in-
congruence of phylogenetic signal, is defined as the sum of
internode certainties.36 The internode certainty measures the
level of support for a given internode by considering its
frequency in a given set of trees jointly with the most prev-
alent conflicting bipartition in the same set of trees.36 Inter-
node certainty values near zero indicate the presence of an
almost equally supported bipartition that conflicts with the
inferred internode, whereas values close to one indicate the
absence of conflict.36,37

Materials and Methods

HIV-1C near full-length genome sequences

A set of 401 HIV-1C nonrecombinant near full-length
genome sequences spanning the region that corresponds to
HXB2 nt positions 790 (the first codon of gag) to 9,611
( - 21 nt at the end of the R region in 3¢-LTR) was retrieved
from the LANL HIV Database (www.hiv.lanl.gov/). The
entire 5¢-LTR and parts of the R and U5 regions of the 3¢-LTR
were not included in the analysis because these regions were
not available in the majority of 401 HIV-1C sequences re-
trieved from the LANL HIV Database. The criteria for se-
quence selection included nonrecombinant HIV-1 subtype C
and single sequence per subject (if multiple sequences were
available). The set of 401 HIV-1C near full-length nonre-
combinant sequences included 279 from South Africa, 45
from Botswana, 16 from India, 14 from Tanzania, 10 from
Zambia, 7 from Malawi, 6 from Brazil, 5 from Israel, 4 from
China, 2 each from Ethiopia, Kenya, and Spain, and a single
sequence each from Argentina, Djibouti, Georgia, Myanmar,
Senegal, Somalia, the United States, Uruguay, and Yemen. A
list of the 401 near full-length genome sequences used in this
study and their accession numbers is presented in Supple-
mentary Table S1 (Supplementary Data are available online
at www.liebertpub.com/aid).

Analyzed subgenomic regions of the HIV-1C genome

The extent of HIV clustering using near full-length ge-
nome sequences was compared with the subgenomic regions
spanning the three structural HIV-1C genes, gag, pol, and
env, and several alternative subgenomic regions that have
been used or proposed for HIV cluster analysis. These sub-

genomic regions included (1) a partial pol sequence spanning
the region encoding HIV-1 protease and the first 335 amino
acids of reverse transcriptase, which corresponds to the se-
quence produced by ViroSeq,38–41 nt positions 2,253–3,554;
(2) partial env sequences spanning the region encoding
the gp120 V1C5 region,42–44 nt positions 6,570–7,757;
(3) ‘‘product 2’’ spanning the 3¢-end of gag and almost the
entire pol,45 nt positions 1,486–5,058; and (4) ‘‘product 4’’
spanning vpu, env, nef, and TATA-box in the U3 region of
3¢-LTR,45 nt positions 5,967–9,517. In addition, combina-
tions of the targeted subregions included gag + pol, gag + env,
pol + env, gag + pol + env, and product 2 + product 4. All but
one of the multiple sequence alignments were trimmed from
the LANL nt-based alignment. The V1C5 codon-based
alignment was generated as described elsewhere42 using
muscle46 in MEGA6.47

Sliding window analysis

Sliding window analysis is a commonly used method for
studying the properties of molecular sequences.48 To esti-
mate the extent of clustering across the HIV-1 genome, a
sliding window analysis with windows advancing incre-
mentally across the multiple sequence alignment (a window
of a certain length slid along the sequence alignment) was
employed. Two sizes of sliding window were used, 1,000 bp
and 2,000 bp. Sliding steps were equal to 1/10 of the window
size—100 bp for the 1,000-bp window, and 200 bp for the
2,000-bp window—and produced multiple sets of over-
lapping multiple sequence alignments. The sizes of the 1,000-
bp and 2,000-bp sliding windows were chosen as a starting
point to assess changes in HIV clustering patterns across the
HIV-1 genome. Note that alternative sizes of sliding windows
and/or sliding steps could also be used. A total of 99 align-
ment sets of 1,000 bp each, and 45 alignment sets of 2,000 bp
each, were generated. The extent of HIV clustering was es-
timated for each window using the same phylogenetic infer-
ence (maximum likelihood) that was applied to the near
full-length genome sequences and subgenomic regions.

Pairwise distances

Pairwise distances in multiple sequence alignments were
computed using the Maximum Composite Likelihood
model49 in MEGA6.47 To address the effects of gaps and
missing data, two distance matrixes were generated: (1) with
all positions containing gaps eliminated (complete deletion
of gaps), and (2) with all ambiguous positions in each se-
quence pair removed (pairwise deletion of gaps).

Variable and informative sites

The numbers of variable and informative sites in each
multiple sequence alignment were enumerated in MEGA6.47

Sites with missing/ambiguous data and gaps were included in
the analysis. The estimated numbers were used for compar-
ison across HIV-1 regions and in association analysis.

Character state changes

The number of character states in the identified informa-
tive sites was computed, according to Wortley and Scot-
land,50 as the minimum number of parsimony-informative
character-state changes, Dmin. The Dmin parameter was
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calculated for each character across informative sites as one
fewer than the number of states that are present in two or
more taxa.50 The estimated numbers of character states were
used for comparison across HIV-1 regions.

Phylogenetic inference

The maximum likelihood tree inference was implemented
in RAxML51,52 under the GAMMA model of rate heteroge-
neity. The statistical support for each node was assessed
by bootstrap analysis from 100 bootstrap replicates per-
formed with the rapid bootstrap algorithm implemented in
RAxML.51 The RAxML runs were performed using RAxML
ver.7.7.5 at the high-performance computing cluster Odyssey
(http://rc.fas.harvard.edu/kb/high-performance-computing/
architectural-description-of-the-odyssey-cluster/) at the Fa-
culty of Arts and Sciences, Harvard University (https://
rc.fas.harvard.edu/).

Estimation of tree certainty

Tree certainty quantifies the degree of conflict or incon-
gruence in a set of phylogenetic trees.36 The quantification of
incongruence is based on Shannon’s entropy.53 The internode
certainty was measured by quantifying the degree of certainty
for each individual internode by considering the two most
prevalent conflicting bipartitions and calculating the log
magnitude of their difference. An internode certainty close to
1 indicates high certainty of the targeted tree node and a lack
of conflict in the data, while values of internode certainty
close to 0 show a high degree of incongruence. For example,
if the most prevalent bipartition is supported by 95% of the
data and the next most prevalent conflicting bipartition is
supported by the remaining 5%, then the value of the inter-
node certainty is approximately 0.71, whereas if the two most
prevalent conflicting bipartitions have the same frequency of
support, then the internode certainty is zero.37 Tree certainty
quantifies the degree of conflict for the whole tree, and is the
sum of internode certainty over all internodes in a phylogeny.37

Tree certainty scores were calculated in RAxML ver. 8.0.052

as described by Salichos et al.37 Extended majority-rule
consensus trees were computed using bootstrapped trees
generated by RAxML for each set of HIV-1C sequences
analyzed.

Statistical analysis

The HIV sequences in clusters were enumerated with
PhyloPart v.254 using bootstrap thresholds 0.7, 0.8, 0.9, and
1.0. All confidence intervals (CI) of estimated proportions are
asymptotic 95% binomial confidence intervals (95% CI)
computed with the prop.test function in R version 3.0.1.55

Comparison between proportions of viral sequences in clus-
ters was performed by McNemar’s test in R, and p-values less
than 1.0E-04 were considered statistically significant. The
association between paired samples was tested by estimating
Pearson’s product-moment correlation coefficient using the
cor.test function in R. For association analysis between se-
quence length and proportion of HIV sequences in clusters,
we used loess regression with the default stat_smooth pa-
rameters to smooth the curve. We note that the assumption of
independence of observations that underlies these tests is not
strictly met. However, the correlation among observations is

expected to be low.56 We validated this belief by comparing
binomial and bootstrap confidence intervals in representative
cases.

For association analysis between the number of variable
and informative sites and the proportion of HIV sequences in
clusters, we used linear regression without smoothing. The
bootstrapped maximum likelihood analysis was performed
using multiple sequence alignments of near full-length ge-
nome, gag, pol, and env sequences, and 100 replicates. Viral
sequence replicates were generated by seqboot from the
PHYLIP package ver. 3.695.57,58 We found confidence in-
tervals to be nearly identical. Sliding windows across the
HIV-1C genome were generated in R using spider.59 All plots
were produced in R using ggplot2.60 All figures were final-
ized in Adobe Illustrator CS6.

Results

Definition of HIV cluster

We define the HIV cluster as a viral lineage that gives rise
to a monophyletic subtree of the overall phylogeny with
strong statistical support. We use the bootstrapped maximum
likelihood method61–63 to determine the statistical support of
clusters. Four levels of bootstrap threshold for identification
of HIV clusters were estimated in this study: ‡ 0.7, ‡ 0.8,
‡ 0.9, and 1.0. A viral lineage (group, subtree) with at least
two viral sequences and strong statistical support is consid-
ered to be an HIV cluster. Clusters were identified using a
depth-first algorithm,54,64 a method for traversing or search-
ing tree or graph data structures starting from the root. This
approach allowed us to avoid double-counting of viral se-
quences and clusters in any cases in which clusters had in-
ternal structure with strong support.

Extent of HIV clustering across the HIV-1C genome

We addressed whether the extent of HIV clustering is as-
sociated with any particular HIV-1 gene or gene subregion.
The proportion of clustered sequences was compared be-
tween near full-length genome HIV-1C sequences and sub-
genomic regions (Fig. 1). Three structural HIV-1C genes,
gag, pol, and env, and two regions commonly used in HIV
cluster analysis, gp120 V1C5 and partial pol spanning the
region that encodes PR and the first 335 amino acids of RT
(ViroSeq), were targeted. For the V1C5 region, two multiple
sequence alignments, nt and codon based, were assessed. All
sets of sequences included the same 401 HIV-1C sequences.
The proportion of HIV sequences in clusters was estimated at
the bootstrap thresholds for cluster definition from 0.7 to 1.0
under maximum likelihood inference.

The highest proportion of HIV sequences in clusters was
observed for near full-length genome HIV-1C sequences.
The proportion ranged from 26.9% (95% CI 22.7% to 31.6%)
at the most stringent bootstrap threshold of 1.0 (Fig. 1D) to
63.6% (95% CI 58.6% to 68.3%) at the most relaxed boot-
strap threshold of 0.7 (Fig. 1A). Among the three structural
HIV-1C genes, the highest proportion of HIV sequences in
clusters was found in pol following by env and gag. For
example, at the bootstrap threshold of 0.80 (Fig. 1B), 38.9%
of pol sequences, 30.7% of env sequences, and 17.2% of gag
sequences were found in clusters, while the proportion of
viral sequences in clusters in the set of near full-length
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genome HIV-1C sequences was 58.9% (95% CI 53.8% to
63.7%). The difference in proportions of clustered sequences
between the set of near full-length HIV-1C sequences and
any of the three structural genes was statistically significant at
all targeted bootstrap thresholds (all p-values from < 0.0001,
McNemar’s test).

The extent of HIV clustering was statistically higher in
HIV-1C pol sequences than in gag sequences at any bootstrap
threshold used (all p-values < 0.0001, McNemar’s test).
The proportion of HIV-1C pol sequences in clusters was
larger than env sequences at a bootstrap threshold 0.9 ( p-
value < 0.0001; McNemar’s test), but did not reach signifi-
cance of 1.0E-04 at other bootstrap thresholds ( p = 0.003 at
0.7, p = 0.00018 at 0.8, and p = 0.00012 at 1.0 bootstrap
threshold). A larger proportion of the HIV-1C env sequences
than gag sequences was found in clusters at bootstrap
thresholds from 0.7 to 0.9 ( p-values < 0.0001 McNemar’s
test), but the difference was not statistically significant at the
threshold of 1.0 ( p-value 0.095).

The proportions of HIV V1C5 and partial pol sequences
(ViroSeq) in clusters were at the level of gag sequences. The
differences between gag and either V1C5 or partial pol se-
quences were nonsignificant for all comparisons based on
McNemar’s test and a significance threshold of 1.0E-04. Si-
milarly, no difference in the proportions of HIV sequences in
clusters was found between V1C5 and partial pol sequences,
or between nt- and codon-based alignments of V1C5 se-
quences.

To assess the stability of HIV clusters we investigated
clustering of near full-length genome sequences (FG) and
genomic subregions—gag, pol, env, V1C5 region (nt and
codon aligned), and ViroSeq—at four bootstrap thresholds,
0.7, 0.8, 0.9, and 1.0 (Supplementary Fig. S1). The analyzed
subset included 236 of 401 near full-length HIV-1C se-
quences that were found in clusters in maximum likelihood
analysis with a bootstrap threshold of ‡ 0.70. The compari-
son revealed substantial heterogeneity in HIV clustering
based on (1) bootstrap threshold, (2) targeted region of the
HIV-1 genome, and (3) sampling. While some sequences
were found in clusters across all analyzed regions (filled
blocks), other sequences cluster in few or no subgenomic
regions (blank blocks). For example, sequences from India
formed clusters in FG, pol, and env, and at low bootstrap
thresholds in ViroSeq regions, but did not cluster in gag or
V1C5. Interestingly, a comparison of clustering profiles be-
tween FG and ViroSeq illustrates that a substantial number of
viral sequences clustered in FG would be found outside of
clusters based on analysis of the ViroSeq, a region widely
used in analysis of HIV clusters.

Hierarchy of tree certainty

The degree of conflict or incongruence in the inferred trees
was quantified by measuring tree certainty.36,37 The com-
parative tree certainty is presented in Fig. 2A. Overall, the
profile of tree certainty data resembled the hierarchy of HIV
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FIG. 1. The extent of HIV clus-
tering. The proportion of HIV-1C
sequences in clusters was estimated
in the bootstrapped maximum
likelihood (ML) analysis im-
plemented in RAxML with 100
replicates. Axis y shows the pro-
portion of HIV-1C sequences in
clusters. Axis x shows targeted re-
gions across the HIV-1C genome:
near full-length genome sequences
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alignment of the V1C5 region, co-
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corresponding to the region tar-
geted by the ViroSeq system. (A–
D) Graphs show the extent of HIV
clustering at different bootstrap
thresholds for cluster identification
(at the top of each graph next to
the figure letter): (A) ‡ 0.70, (B)
‡ 0.80, (C) ‡ 0.90, and (D) 1.0.
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clustering in Fig. 1. The tree based on near full-length ge-
nome sequences showed the highest tree certainty. The pol
tree had the highest certainty among three structural HIV-1
genes, while the gag-based tree had the lowest certainty. The
partial pol tree and V1C5-based trees showed relatively low
tree certainty at the levels comparable with the gag tree
certainty. The partial pol tree certainty was a little higher than
the V1C5 trees certainty.

Variable and informative sites and character
state changes

The profiles of variable sites (Fig. 2B), informative sites
(Fig. 2C), and character states (Fig. 2D) across analyzed re-
gions of HIV-1C resembled the proportions of viral se-
quences in clusters presented in Fig. 1 and the profile of tree
certainty in Fig. 2A. The near full-length genome sequences
showed the highest levels of variable and informative sites,
and the highest number of character state changes.

Cluster size distribution

The sizes of identified clusters varied from 2 to 20
sequences per cluster. The majority of viral sequences
were within small clusters. The number of clusters with
10 + members was small, and decreased gradually with in-
creasing stringency of the bootstrap threshold from 0.7 to 1.0.
The cluster size distribution was similar between full-length
genome HIV-1C sequences and analyzed subgenomic re-

gions (Fig. 3). As was shown previously,7,19,42 the degree
distribution inferred from cluster size data can be approxi-
mated by a power law.65 As shown in Fig. 3 (numbers in the
upper right corner of each graph), the number of identified
clusters and the number of viral sequences in clusters de-
creased gradually with tightening bootstrap support from 0.7
to 1.0.

To investigate the stability of clusters, we compared
whether sequences that clustered in the near full-length ge-
nome analysis also clustered in the subgenomic regions. The
pie charts within the gag, pol, and env graphs in Fig. 3 show
the number of viral sequences that (1) clustered in both the
full-length genome and the subgenomic region ( + + ), (2)
clustered in the full-length genome but not in the subgenomic
region ( + - ), (3) did not cluster in the full-length genome but
did cluster in the subgenomic region ( - + ), and (4) clustered
in neither the full-length genome nor the subgenomic region
( - - ). Concordant clustering ( + + or - - ) was more pro-
nounced for pol and env, while discordant clustering ( + - or
- + ) was more common for gag.

Sliding widow analysis

To assess the extent of HIV clustering across the HIV-1
genome, sliding window analysis was performed with win-
dow size of 1,000 bp and 2,000 bp, and sliding steps of 100 bp
and 200 bp, respectively. This analysis allowed us to inves-
tigate how patterns of HIV clustering change across the HIV-
1 genome.
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(A) Relative tree certainty. Inter-
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The profile of HIV clustering across the HIV-1 genome
was ‘‘wave shaped’’ (Fig. 4) suggesting a differential con-
tribution of regions across the HIV genome to clustering. The
highest extent of HIV clustering was associated with the re-
gion encoding the HIV-1 reverse transcriptase. Intermediate
extents of HIV clustering were observed for regions encoding
HIV-1 protease, integrase, vif/vpr/first exon of tat/first exon
of rev/vpu, and gp41/nef. HIV-1C gag and gp120 showed the
lowest extent of HIV clustering.

The size of the sliding window has a substantial effect on
the extent of HIV clustering. Longer viral sequences with
window size 2,000 bp were associated with higher extents of
HIV clustering than sequences with window size 1,000 bp
across the entire HIV genome (Fig. 4). The ups and downs in
the profiles of HIV clustering were similar between longer
and shorter HIV windows.

As expected, the bootstrap thresholds for cluster definition
affected the extent of HIV clustering across the entire HIV
genome, as shown in Fig. 4B (bootstrap threshold of ‡ 0.7)

through 4E (bootstrap threshold of 1.0). The difference of
HIV clustering between longer and shorter sequences grad-
ually decreased with tightening of the bootstrap threshold.

To address the composition stability of HIV clusters, we
analyzed the consistency of clustering across 1,000-bp
(Supplementary Fig. S2) and 2,000-bp (Supplementary Fig.
S3) sliding windows at a bootstrap threshold of ‡ 0.80. Only
a subset of 236 HIV-1C sequences found in clusters in max-
imum likelihood analysis with bootstrap support of ‡ 0.70
were included in this analysis. A side-by-side comparison of
Supplementary Figs S2 and S3 highlights the point that HIV
clustering is more intense with the larger sliding window of
2,000 bp. A deeper look into sliding windows across the viral
genome reveals substantial heterogeneity in HIV clustering
based on the subgenomic region and sampling. For example,
two sequences from Spain (located between ET/IL and CN
sequences) clustered within all sliding windows across the
entire viral genome. Note that these sequences were obtained
from a 53-year-old man and a 62-year-old woman from
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bootstrap threshold ‡ 0.70. Column (B): HIV clustering at bootstrap threshold ‡ 0.80. Column (C): HIV clustering at
bootstrap threshold ‡ 0.90. Column (D): HIV clustering at bootstrap threshold 1.0.
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Spain,66,67 and have 98.7% similarity between their pairwise
distances in near full-length HIV-1C genome analysis.

In contrast, some other sequences were outside of clusters
across all sliding windows. A subset of Indian sequences
showed sporadic clustering across 1,000-bp windows, but
demonstrated more consistent clustering in 2,000-bp windows
over pol, vif, vpr, the first exon of tat, and the C1 region of
gp120 followed by an abrupt stop of clustering across most of
env. Analysis of potential reasons for such a differential clus-
tering across the viral genome—such as searching for specific
signatures associated with clustering—warrants dedicated fu-
ture studies, and should be taken in the context of sampling.

Potential associations

The observed difference in the extent of HIV clustering
between the two sliding windows, 1,000 bp and 2,000 bp,
provided a rationale for taking a closer look at potential as-
sociations between the size of HIV sequences and the extent
of HIV clustering. To assess these associations, we used vi-
ral sequences spanning subgenomic regions across HIV-1C

genome, as described above in Materials and Methods, sub-
section ‘‘Analyzed subgenomic regions of HIV-1C genome’’:
gag, pol, env, partial pol (ViroSeq), V1C5, product 2
(3,573 bp; spans partial gag at the 3¢-end and the entire pol;
HXB2 nt positions 1,486–5,058),45 product 4 (3,558 bp; spans
vpu, env, nef, and TATA-box in the U3 region of 3¢-LTR;
HXB2 nt positions 5,967–9,517),45 and combination of these
subregions (a combination of products 2 and 4 spans about
80% of the unique full length HIV-1 genome sequence).

We found a strong positive association between the se-
quence length and the extent of HIV clustering (Fig. 5).
Correlation coefficients above 0.9 for all tested bootstrap
thresholds were accompanied by statistically significant p-
values from 2.3E-07 to 9.6E-06. The estimated 95% CIs for
correlation coefficients were relatively tight across all boot-
strap thresholds used in this analysis. Similarly positive as-
sociations were found between the extent of HIV clustering
and parameters related to the sequence length, such as the
number of variable sites (correlation coefficients from 0.90 to
0.93) and the number of informative sites (correlation coef-
ficients from 0.89 to 0.93).

Sliding window 1,000 bp, 100 bp steps, 99 windows

Sliding window 2,000 bp, 200 bp steps, 45 windows
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We addressed whether parameters related to sequence
length, such as the number of variable and informative sites,
are associated with the proportion of HIV sequences in clus-
ters. We computed the number of variable and informative
sites in 99 alignments (401 HIV-1C sequences and 1,000 bp
each alignment) that were generated in sliding window anal-
ysis. We found a moderate positive correlation between the
number of variable (Fig. 6A–D) and informative (Fig. 6E–H)
sites and the proportion of HIV sequences in clusters. Corre-
lation coefficients between 0.40 and 0.43 for the number of
variable sites, and between 0.27 and 0.39 for informative sites,
were accompanied by statistically significant p-values below
0.01 for all analyzed bootstrap thresholds. However, 95% CIs
for correlation coefficients were relatively broad, which was
more evident at less stringent bootstrap thresholds.

The distribution of gaps in the multiple sequence alignment
was not uniform. Therefore, to address whether gaps affect the
observed extent of HIV clustering, we used two types of gaps
deletion, pairwise and complete deletion. Under the pairwise
deletion of gaps, distances were computed for each pair of
sequences, ignoring only gaps that were involved in this
comparison. Under the complete deletion of gaps, all sites with
gaps were excluded from the multiple sequence alignment. We
found no significant associations between the observed extent
of HIV clustering and pairwise distances within the analyzed
subgenomic regions across the HIV-1C genome (Supple-
mentary Fig. S4). Results of analysis with pairwise deletion of
gaps (Supplementary Fig. S4A–D) were similar to results of
analysis with complete deletion of gaps (Supplementary Fig.
S4E–H), suggesting that gaps have little to no effect on the
association (or lack of association) between the observed ex-
tent of HIV clustering and pairwise distances.

Discussion

The dynamics of HIV transmission networks can be in-
vestigated through comprehensive HIV cluster analysis. HIV

cluster analysis can provide insights into the dynamics of
HIV spread, and the results of HIV cluster analysis can help
inform public health prevention interventions, such as an
optimal balance of Treatment-as-Prevention and Pre-Exposure
Prophylaxis strategies. The higher the extent of HIV clustering,
the more informative HIV cluster analysis could be.

In this study we investigated whether the extent of HIV
clustering is associated with the size/length of targeted HIV
sequences, or the number of variable and informative sites, or
with a particular subgenomic region across the HIV-1 ge-
nome. The extent of HIV clustering was compared between
the near full-length genome and subgenomic regions.

The near full-length genome HIV sequences were associ-
ated with the highest extent of HIV clustering. For example,
58.9% of near full-length HIV-1C sequences were found in
clusters at the bootstrap threshold of 0.80 in maximum like-
lihood analysis. For comparison, only 15.5% of partial pol
sequences (ViroSeq) were in clusters at the same running
conditions. As expected, the bootstrap threshold affected the
extent of HIV clustering. However, a higher extent of HIV
clustering of near full-length genome sequences compared to
subgenomic regions associated with HIV-1 structural genes
was evident at any analyzed bootstrap threshold; the level of
clustering dropped from 63.6% at a bootstrap threshold of 0.7
to 26.9% at a bootstrap threshold of 1.0. Among HIV-1
structural genes, pol showed the highest extent of clustering.

The estimated tree certainty, a novel metric for degree of
conflict or incongruence, in the inferred phylogenetic tree
was also the highest in the set of near full-length genome
sequences, followed by pol. Combined with the extent of HIV
clustering, the tree certainty estimates provide additional
evidence that near full-length genome HIV sequences are the
most informative choice for HIV cluster analysis.

The sequence size, or length, used in HIV cluster analysis
appeared to have a dramatic effect on the extent of HIV
clustering. This was evident from the comparison of HIV
clustering between two sliding windows, 1,000 bp and
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2,000 bp long, which were run across the entire HIV-1 ge-
nome with 100 bp and 200 bp steps, respectively. Despite
fluctuations across the HIV-1 genome, the extent of HIV
clustering was significantly higher for larger sliding windows
spanning similar regions in the HIV-1 genome. The sliding
window analysis allowed us to identify regions across the
HIV-1 genome with higher propensities for HIV clustering.

To assess potential associations between the extent of HIV
clustering and sequence length, we employed concatenated
sets of HIV-1C genes and subgenomic regions, and included
several previously described regions45 that can be used in
HIV cluster analysis. We found strong associations between
the sequence length and the proportion of HIV sequences in
clusters, which was evident from high correlation coefficients
between 0.92 and 0.96. The strong association pattern was
replicated at different bootstrap thresholds for cluster defi-
nition, and with parameters related to sequence length, such
as the number of variable sites, and the number of parsimony-
informative sites in the multiple sequence alignment. Inter-
estingly, the loess regression curve plateaued for the
sequence length between about 3,000 bp and 6,000 bp for the
bootstrap thresholds 0.7 to 0.9, but above 7,000 bp length for
the 1.0 threshold (Fig. 5).

We also found a direct correlation between the number of
variable and informative sites and the proportion of HIV
sequences in clusters. This association was less pronounced
than the association between sequence length and clustering,
which was evident from correlation coefficients from 0.40 to
0.43 for variable sites and from 0.27 to 0.39 for informative
sites (Fig. 6).

All 401 near full-length sequences used in this study were
nonrecombinant HIV-1C, as this was the selection criterion
from the LANL HIV Database. However, intrasubtype re-
combination in the analyzed sequences could not be ruled out
without a special dedicated analysis, which warrants further
studies. It has been suggested that intrasubtype recombina-
tion in HIV-1C could be extensive.68 While we reported
frequent intrasubtype recombination in intrapatient viral
quasispecies,69 reliable identification of recombination be-
tween patients infected with the same HIV-1 subtype is still
challenging due to a lack of a straightforward and unam-
biguous methodology. Assuming that intrasubtype recombi-
nants are identified with improved technology in future
studies, the specifics and nature of intrasubtype recombina-
tion could either complicate or assist in the analysis of HIV
clustering. For example, the analysis could be complicated
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due to overestimation of evolutionary rates and a skewed
molecular clock.70–72 At the same time, if intrasubtype re-
combinants are involved in chains of viral transmission, the
recombination footprints could be used as transmission sig-
natures, and could help identify and trace the transmitting
HIV lineages.

The results of the study are limited to the available set of
401 near full-length genome HIV-1C sequences retrieved
from the LANL HIV Database. The sample size was rela-
tively small; demographic and socioeconomic data, as well as
stage of HIV infection at the time of sampling, were un-
available for most sequences, and representation of geo-
graphic areas was skewed toward one country, South Africa.
Comparison with other HIV-1 subtypes is not currently fea-
sible since, in the public domain, only HIV-1 subtypes B and
C, and CRF01_AE, have decent representation of near full-
length genomes, at least at the moment.

The current analysis is based on HIV-1C sequences col-
lected from areas with a predominantly heterosexual mode of
transmission. It is possible that patterns of HIV clustering
might differ between modes of viral transmission and HIV-1
subtypes associated with particular modes of transmission.
As we demonstrated recently,73 sampling density is another
critical factor affecting the extent of HIV clustering.

In summary, the results of this study provide evidence that
the extent of HIV clustering is directly associated with the
length of viral sequences used in cluster analysis. Thus, near
full-length genome sequences could be considered the top
choice for the most informative HIV cluster analysis. An
alternative approach to HIV cluster analysis could be based
on selected subgenomic regions with an elevated extent of
HIV clustering and high tree certainty.
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