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Rapid epidemic expansion of the SARS-CoV-2 
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The SARS-CoV-2 epidemic in southern Africa has been characterized by three distinct 
waves. The first was associated with a mix of SARS-CoV-2 lineages, while the second and 
third waves were driven by the Beta (B.1.351) and Delta (B.1.617.2) variants, respectively1–3. 
In November 2021, genomic surveillance teams in South Africa and Botswana detected a 
new SARS-CoV-2 variant associated with a rapid resurgence of infections in Gauteng 
province, South Africa. Within three days of the first genome being uploaded, it was 
designated a variant of concern (Omicron, B.1.1.529) by the World Health Organization 
and, within three weeks, had been identified in 87 countries. The Omicron variant is 
exceptional for carrying over 30 mutations in the spike glycoprotein, which are 
predicted to influence antibody neutralization and spike function4. Here we describe the 
genomic profile and early transmission dynamics of Omicron, highlighting the rapid 
spread in regions with high levels of population immunity.

Since the onset of the COVID-19 pandemic in December 2019, variants 
of SARS-CoV-2 have emerged repeatedly. Some variants have spread 
worldwide and made major contributions to the cyclical infection waves 
that occur asynchronously in different regions. Between October and 
December 2020, the world witnessed the emergence of the first variants 
of concern (VOCs). These variants exhibited increased transmissibility 
and/or immune evasion properties that threatened global efforts to 
control the pandemic. Although the Alpha (B.1.1.7), Beta and Gamma 
VOCs2,5 that emerged during this time disseminated globally and drove 
epidemic resurgences in many different countries, it was the highly 

transmissible Delta variant that subsequently displaced all of the other 
VOCs in most regions of the world6. During its spread, the Delta variant 
evolved into multiple sublineages7, some of which demonstrated signs 
of having a growth advantage in certain locations8, prompting specula-
tion that the next VOC to drive a resurgence of infections would prob-
ably be derived from Delta. In October 2021, while Delta was continuing 
to exhibit high levels of transmission in the Northern Hemisphere, a 
large Delta wave was subsiding in southern Africa. The culmination of 
this wave coincided with the emergence of a new SARS-CoV-2 variant 
that, within days of its near-simultaneous discovery in four individuals 
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in Botswana, a traveller from South Africa in Hong Kong and 54 indi-
viduals in South Africa, was designated by the World Health Organiza-
tion (WHO) as Omicron—the fifth VOC of SARS-CoV-2. Since then and 
the beginning of 2022, over 100,000 genomes of Omicron have been 
produced as Omicron has started to dominate SARS-CoV-2 infections 
in the world.

Epidemic dynamics and detection of Omicron
The three distinct epidemic waves of SARS-CoV-2 experienced by south-
ern African countries were each driven by different variants: the first 
between June and August 2020 by descendants of the B.1 lineage1; the 
second between November 2020 and February 2021 by the Beta VOC2,9; 
and the third between May and September 2021 by the Delta VOC3, with 
an estimated 2–5% of third-wave cases in South Africa attributed to the 
C.1.2 lineage10 (Fig. 1a). Serosurveys conducted before the Delta wave 
suggested high levels of exposure to SARS-CoV-2 (40–60%) in South 
Africa11,12, and the estimated seroprevalence was >70% in Gauteng on 
the basis of a population-based survey that was conducted between 
October and December 2021 (ref. 13). The weeks following the third 
wave in South Africa, between 10 October and 15 November 2021, were 
marked by lower levels of transmission, as indicated by a low incidence 
of reported COVID-19 cases (100–200 new cases per day) and low (<2%) 
test positivity rates (Fig. 1a–c).

A rapid increase in COVID-19 cases was observed from the middle of 
November 2021 in Gauteng province, the economic hub of South Africa 
containing the cities of Tshwane (Pretoria) and Johannesburg. Specifi-
cally, rising case numbers and test positivity rates were first noticed 
in Tshwane, initially associated with outbreaks in higher-education 
settings. This resurgence of cases was accompanied by an increasing 
frequency of S-gene target failure (SGTF) during TaqPath-based diag-
nostic PCR testing: a phenomenon that was previously observed with 
the Alpha variant due to a deletion at amino acid positions 69 and 70 
(∆69–70) in the SARS-CoV-2 spike protein14. Given the low prevalence 
of Alpha in South Africa (Fig. 1a), targeted whole-genome sequencing 
of these specimens was prioritized.

On 19 November 2021, sequencing results from a batch of 8 SGTF 
samples collected between 14 and 16 November 2021 indicated that all 
were of a new and genetically distinct lineage of SARS-CoV-2. Further 
rapid sequencing identified the same variant in 29 out of 32 routine 
diagnostic samples from multiple locations in Gauteng province, 
indicating the widespread circulation of this new variant by the second 
week of November. Crucially, this rise immediately preceded a sharp 
increase in reported case numbers (Fig. 1c, Extended Data Fig. 1).  
In the following four days, the presence of this lineage was confirmed 
by sequencing in another two provinces—KwaZulu-Natal and the 
Western Cape (Fig. 1b).

Concurrently, in Gaborone, Botswana (<360 km from Tshwane), 
four genomes generated from samples collected on 11 November 2021 
and sequenced on 17–18 November 2021 as part of weekly surveillance 
displayed an unusual set of mutations. These were reported to the Bot-
swana Ministry of Health and Wellness on 22 November 2021 as unusual 
sequences that were linked to a group of visitors (non-residents) on a 
diplomatic mission. The sequences were uploaded to GISAID15,16 on  
23 November 2021, and it became apparent that they belonged to a 
new lineage. A further 15 genomically confirmed cases (not epidemio-
logically linked to the first four) were identified within the same week 
from various other locations in Botswana. All of these either had travel 
links from South Africa, or were contacts of someone with travel links.

On 24 November 2021, these SARS-CoV-2 genomes from both South 
Africa and Botswana were designated as belonging to a new PANGO 
lineage (B.1.1.529)17, which was later divided into sublineages aliased 
BA.1 (the main clade), BA.2 and BA.3. On 26 November 2021, the line-
age was designated a VOC and named Omicron by the WHO on the 
recommendation of the Technical Advisory Group on SARS-CoV-2 

Virus Evolution18. By the first week of December 2021, Omicron was 
causing a rapid and sustained increase in cases in South Africa and 
Botswana (Fig. 1c, Extended Data Fig. 2 (for Botswana)). In Gauteng, 
weekly test positivity rates increased from <1% in the week begin-
ning 31 October, to 16% in the week beginning 21 November 2021, 
and to 35% in the week beginning 28 November, concurrent with 
an exponential rise in COVID-19 incidence (Fig. 1c, Extended Data 
Fig. 1). Nationally, daily case numbers exceeded 22,000 (84% of the 
peak of the previous wave of infections) by 9 December 2021. At the 
same time, the proportion of TaqPath PCR tests with SGTF increased 
rapidly in all provinces of South Africa, reaching ~90% nationally by 
the week beginning 21 November 2021, strongly indicating that the 
fourth wave was being driven by Omicron—an indication that has 
now been confirmed by virus genome sequencing in all provinces 
(Fig. 1c). Similarly, Botswana experienced a sharp increase in cases, 
doubling every 2–3 days during late November to early December 
2021, transitioning from a 7-day moving average of <10 cases per 
100,000 individuals to above 25 cases per 100,000 individuals in 
less than 10 days (Extended Data Fig. 2).

By 16 December 2021, Omicron had been detected in 87 countries, 
both in samples from travellers returning from southern Africa, and 
in samples from routine community testing (Extended Data Fig. 3) 
and, by 1 January 2022, over 100,000 genomes had been produced 
from over 100 countries and Omicron was becoming the dominant 
VOC in the world.

Evolutionary origins of Omicron
To determine when and where Omicron probably originated, we 
analysed all 686 available Omicron genomes (including 248 from 
southern Africa and 438 from elsewhere in the world) retrieved from 
GISAID (date of access, 7 December 2021)15,16, in the context of a global 
reference set of representative SARS-CoV-2 genomes (n = 12,609) 
collected between December 2019 and November 2021. Prelimi-
nary maximum-likelihood phylogenies identified the Omicron BA.1 
sequences as a monophyletic clade rooted within the B.1.1 lineage 
(Nextstrain clade 20B), with no clear basal progenitor (Fig. 2a). Impor-
tantly, the BA.1 cluster is highly phylogenetically distinct from any 
known VOCs or variants of interest (VOIs) and from any other lineages 
that are known to be circulating in southern Africa (such as C.1.2) 
(Fig. 2a). More recently, two related lineages have emerged (BA.2 and 
BA.3), both sharing many, but not all of the characteristic mutations of 
BA.1 and both having many unique mutations of their own (Extended 
Data Fig. 4a, b). While BA.2 and BA.3 are evolutionarily linked to BA.1 
in that they all branch off of the same B.1.1 node without obvious 
progenitors, the three sublineages evolved independently from one 
another along separate branches (Extended Data Fig. 4c, d). The earli-
est specimens of BA.2 and BA.3 were both sampled after the earliest 
known BA.1 in South Africa (8 November 2021 at the time of writing), 
on 17 November 2021 in Tshwane (Gauteng) and on 18 November 2021 
in a neighbouring province (North West), respectively. We primarily 
focus here on the BA.1 lineage, which is rapidly spreading in multiple 
countries around the world and is the lineage that was first officially 
designated as the Omicron VOC.

Time-calibrated Bayesian phylogenetic analysis of all BA.1 assigned 
genomes from southern Africa (as of 11 December 2021, n = 553) esti-
mated the time at which the most recent common ancestor (TMRCA) 
of the analysed BA.1 lineage sequences existed to be 9 October 2021 
(95% highest posterior density (HPD) 30 September–20 October) with 
a per-day exponential growth rate of 0.137 (95% HPD = 0.099–0.175) 
reflecting a doubling time of 5.1 days (95% HPD = 4.0–7.0) (Fig. 2b). 
These estimates are robust to whether the evolutionary rate is esti-
mated from the data or fixed to previously estimated values (Extended 
Data Table 1). Limiting the analysis to genomes from Gauteng prov-
ince only yields a faster growth rate estimate with a doubling time of  
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2.8 days (95% HPD = 2.1–4.2) (Extended Data Table 1). Using a phylo-
dynamic model that accounts for variable genome sampling through 
time (birth–death skyline model (BDSKY)19) yields a doubling time 
of BA.1-assigned genomes from South Africa and Botswana (n = 552) 
of 3.9 (95% HPD = 3.5–4.3) days with an effective reproduction num-
ber (Re) of 2.79 (95% HPD = 2.60–2.97) during the period from early 
November to early December. The BDSKY-estimated Re for the 
Gauteng province dataset is 3.86 (95% HPD = 3.43–4.29) and 3.61  
(95% HPD = 3.20–4.02) for the 3-epoch and 4-epoch model, respectively  

(Extended Data Tables 4 and 5). Spatiotemporal phylogeographic 
analysis indicates that the BA.1 variant spread from the Gauteng prov-
ince of South Africa to seven of the eight other provinces and to two 
regions of Botswana from late October to late November 2021, and 
shows evidence of more recent transmission within and between other 
South African provinces (Fig. 2c). However, this does not imply that 
Omicron originated in Gauteng and these phylogeographic infer-
ences could change as further genomic data accumulate from other 
locations.
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Fig. 1 | Detection of Omicron variant. a, The progression of daily reported 
cases in South Africa from March 2020 to December 2021. The 7-day rolling 
average of daily case numbers is coloured by the inferred proportion of 
variants responsible for the infections, as calculated by genomic surveillance 
data on GISAID. b, Timeline of Omicron detection in Botswana and South 
Africa. Bars represent the number of Omicron genomes shared per day, 
according to the date they were uploaded to GISAID; the line represents the 
7-day moving average of daily new cases in South Africa. BHHRL, Botswana 
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Genomic Surveillance in South Africa; SA, South Africa. c, Weekly progression 
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of SGTF tests (on the TaqPath COVID-19 PCR assay) and genomic prevalence of 
Omicron in nine provinces of South Africa for five weeks from 31 October to  
4 December 2021. Note that, because of heterogeneous use of the TaqPath PCR 
assay across provinces, the proportion of SGTF tests illustrated for the Eastern 
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based on only 2 and 4 data points, respectively. Genomic prevalence here is 
equivalent to the proportion of weekly surveillance sequences genotyped as 
being Omicron.
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Molecular profile of Omicron
Compared with Wuhan-Hu-1, BA.1 carries 15 mutations in the spike 
receptor-binding domain (RBD) (Fig. 3), five of which (G339D, N440K, 
S477N, T478K and N501Y) have been shown individually to enhance 
bind to human ACE2 (hACE2)20. Seven of the RBD mutations (K417N, 
G446S, E484A, Q493R, G496S, Q498R and N501Y) are expected to 
have moderate to strong effects on the binding of at least three out 
of the four major classes of RBD-targeted neutralizing antibodies21–23. 
These RBD mutations coupled with four amino acid substitutions 
(A67V, T95I, G142D and L212I), three deletions (69–70, 143–145 and 
211) and an insertion (EPE between 214 and 215) in the N-terminal 
domain (NTD)24 are predicted to underlie the substantially reduced 
sensitivity of Omicron to neutralization by anti-SARS-CoV-2 antibod-
ies induced by either infection or vaccination25,26. These mutations 
also involve key structural epitopes that are targeted by some of 

the currently authorized monoclonal antibodies, particularly bam-
lanivimab + etesevimab and casirivimab + imdevimab26–29. Prelimi-
nary analysis suggests that, although the spike mutations involve a 
number of T cell and B cell epitopes, the majority of epitopes (>70%) 
remain unaffected30.

Omicron also has a cluster of three mutations (H655Y, N679K and 
P681H) adjacent to the S1/S2 furin cleavage site (FCS) that are likely 
to enhance spike protein cleavage and fusion with host cells31,32 and 
that could also contribute to enhanced transmissibility33 (Extended 
Data Fig. 5).

Outside of the spike protein, a deletion in nsp6 (del105–107), in the 
same region as deletions seen in Alpha, Beta, Gamma and Lambda, may 
have a role in evasion of innate immunity34, and the double mutation 
in nucleocapsid (R203K and G204R)—which is also present in Alpha, 
Gamma and C.1.2—has been associated with enhanced infectivity in 
human lung cells35.
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Recombination analysis
Given the large number of mutations differentiating BA.1, BA.2 and BA.3 
from other known SARS-CoV-2 lineages, it was considered plausible that 
(1) all of these lineages might have descended from a common recombi-
nant ancestor; (2) one or more of the BA lineages might have originated 
through recombination between a virus in one of the other BA lineages 
and a virus in a non-BA lineage; or (3) one of the BA lineages may have 
originated through recombination between viruses in the other two BA 
lineages. We tested these hypotheses using a variety of recombination 
detection approaches (implemented using GARD36, 3SEQ37 and RDP5 
(ref. 38)) to identify potential signals of recombination in sequence 
datasets containing the BA.1, BA.2 and BA.3 sequences together with 
sequences representative of global SARS-CoV-2 genomic diversity.

Potential evidence of a single recombination event involving BA.1, 
BA.2 and BA3 was identified by 3SEQ (P = 0.03), GARD (delta c-AIC = 20) 
and RDP5 (GENECONV P = 0.027; RDP P = 0.006) within the NTD 
encoding region of spike. The most likely breakpoint locations for 
this recombination event were 21690 for the 5′ breakpoint (high likeli-
hood interval between 15716 and 21761) and 22198 for the 3′ breakpoint 
(high likelihood interval between 22197 and 22774). However, these 
analyses could not reliably identify which of BA.1, BA.2 or BA.3 was the 
recombinant. Phylogenetic analysis of the genome regions bounded 
by these breakpoints (genome coordinates 1–21689, 21690–22198 

and 22199–29903) potentially supported (1) BA.1 having acquired the 
NTD encoding region of BA.3 through recombination, (2) BA.3 having 
acquired the NTD-encoding region of BA.1 through recombination or 
(3) BA.2 having acquired the NTD-encoding region of a non-BA lineage 
virus through recombination (Extended Data Fig. 6).

Although we found weak statistical and phylogenetic evidence of one of 
BA.1, BA.2 or BA.3 being recombinant, we found no evidence that the MRCA 
of the BA.1, BA.2 and BA.3 lineages was recombinant. However, note that 
recombination tests in general will not have sufficient statistical power to 
reliably identify evidence of individual recombination events that result in 
transfers of less than ~5 contiguous polymorphic nucleotide sites between 
genomes36,39,40. Furthermore, if BA.1, BA.2 and/or BA.3 are the products of 
a series of multiple partially overlapping recombination events occurring 
across multiple temporally clustered replication cycles, the complex pat-
terns of nucleotide variation that might result could be extremely difficult 
to interpret as recombination using the methods applied here41.

Selection analysis of Omicron
The large numbers of mutations seen in the BA.1, BA.2 and BA.3 lineage 
sequences may have accrued at an accelerated pace under the influence 
of positive selection. To test for evidence of this, we applied a selec-
tion analysis pipeline to all of the available sequences designated as 
BA.1, BA.2 and BA.3 in GISAID as of 20 December 2021. We ran selection 
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screens individually on BA.1, BA.2 and BA.3 sequences, according to 
a previously described procedure34. We downsampled alignments of 
individual protein-encoding regions to obtain a median of 110 geneti-
cally unique BA.1 sequences, 3 BA.2 sequences, 2.5 BA.3 sequences and 
around 100 other unique sequences for each gene/open reading frame 
(ORF) from a representative collection of other SARS-CoV-2 lineages 
(used as background sequences to contextualize evolution within the 
Omicron subclade).

Given that the BA.1 lineage has 1,000-fold more sequences than BA.2 
and BA.3, we performed the most detailed analysis on it. We detected 
evidence of gene-wide positive selection (using the BUSTED method42) 
acting on 11 genes or ORFs since the ancestral BA.1 lineage split from 
the B.1.1 lineage: M gene (P = 0.002), N gene (P = 0.006), nsp3 (P = 0.05),  
S gene, exonuclease, RdRp, methyltransferase, helicase, ORF7a, ORF6 and 
ORF3a (P < 0.0001 for all tests). In all ten genes, this selection was strong 
(ratio of non-synonymous to synonymous substitutions (dN/dS) > 5) 
and occurred in bursts (≤6% of branch–site combinations selected). 
The branch separating BA.1 from its most recent B.1.1 ancestor had the 
most prominent selection signal (which was strongest in the S gene, with 
evidence for nine positively selected sites along this branch43), strongly 
supporting the hypothesis that adaptive evolution had a substantial role 
in the mutational divergence of Omicron from other B.1.1 SARS-CoV-2 lin-
eages. Relative to the intensity of selection evident within the background 
B.1.1 lineages, selection in five genes was probably significantly intensi-
fied in the BA.1 lineage: S gene (intensification factor K = 2.1, P < 0.000144), 
exonuclease (K = 3.50, P = 0.0009), nsp6 (K = 2.4, P = 0.03), RdRp (K = 1.14, 
P = 0.02) and M (K = 4.6, P < 0.0001).

Among 1,546 codon sites that are polymorphic among the BA.1 
sequences analysed, 45 were found to have experienced episodic posi-
tive selection since BA.1 split from the B.1.1 lineage45 (MEME P ≤ 0.01; 
Extended Data Table 2) . Twenty-three (51%) of these codon sites are in 
the S gene, thirteen of which contain BA.1-lineage-defining mutations 
(that is, these selection signals reflect mutations that occurred within 
the ancestral Omicron lineage). The three positively selected codon 
sites that did not correspond to sites of lineage-defining mutations 
(S, 346; S, 452; and S, 701) are particularly notable as these are attribut-
able to mutations that have occurred since the MRCA of the analysed 

BA.1 sequences. The mutations driving the positive selection signals 
at these three sites in the Omicron S gene converge on mutations seen 
in other VOCs or VOIs (R346K in Mu, L452R in Delta, and A701V in Beta 
and Iota). The A701V mutation, the precise impact of which is currently 
unknown, is one of 19 in a proposed ‘501Y-lineage spike meta-signature’ 
comprising the set of mutations that were most adaptive during the 
evolution of the Alpha, Beta and Gamma VOC lineages34. Furthermore, 
both R346K and L452R are known to affect antibody binding22 and both 
of the codon sites at which these mutations occur display evidence 
of directional selection (using the FADE method46). These selective 
patterns suggest that, during its current rapid spread, BA.1 may be 
undergoing additional evolution to modify its neutralization profile.

As the numbers of available BA.2 and BA.3 sequences are much lower 
than for BA.1, the power to perform selection detection was much 
reduced and not possible for some genomic regions. Nonetheless, there 
was a strong signal of selection on the S gene (P < 0.0001 for BA.2 and 
P = 0.05 for BA.3) and selective pressures on this gene in the BA.2 clade 
were intensified relative to reference SARS-CoV-2 isolates (K = 6.25, 
P = 0.005). Within BA.2 sequences, positive selection was detectable 
on five sites in the S gene (371, 376, 405, 477 and 505—all clade defining 
sites) as well on two sites in the M gene (19 and 63—both clade-defining 
sites). Within BA.3 sequences, positive selection was detectable on 
four sites in the S gene (67, 371, 477 and 505—all clade-defining sites) as 
well on two sites in the N gene (13 and 413—both clade defining sites).

Transmissibility and immune evasion
We estimated that Omicron had a growth advantage of 0.24 (95% 
CI = 0.16–0.33) per day over Delta in Gauteng, South Africa (Fig. 4a). 
This corresponds to a 5.4-fold (95% CI = 3.1–10.1) weekly increase in 
cases compared with Delta. The growth advantage of Omicron is likely 
to be mediated by (1) an increase relative to other variants in its intrinsic 
transmissibility, (2) an increase relative to other variants in its ability 
to infect, and be transmitted from, previously infected and vaccinated 
individuals; or (3) both.

The predicted combination of transmissibility and immune eva-
sion for Omicron strongly depends on the assumed level of current 
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Fig. 4 | Growth of Omicron in Gauteng, South Africa, and the relationship 
between potential increase in transmissibility and immune evasion.  
a, Omicron rapidly outcompeted Delta in November 2021. Model fits are based 
on a multinomial logistic regression. Dots represent the weekly proportions of 
variants. b, The relationship between the potential increase in transmissibility 
and immune evasion strongly depends on the assumed level of current 

population immunity against Delta that is afforded by previous infections 
during earlier epidemic waves and/or vaccination (Ω). c–e, The relationship for 
a population immunity of 40% (c), 60% (d) and 80% (e) against infection and 
transmission with Delta. The dark vertical dashed line indicates equal 
transmissibility of Omicron compared to Delta. The shaded areas correspond 
to the 95% CIs of the model estimates.
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population immunity against infection by, and transmission of, the 
competing variant Delta that is afforded by previous infections with 
Beta, Delta and other strains during the three previous epidemic waves 
in South Africa, and/or vaccination (Fig. 4b). For moderate levels of 
population immunity against Delta (Ω = 0.4), immune evasion alone 
cannot explain the observed growth advantage of Omicron (Fig. 4c). 
For medium levels of immunity against Delta (Ω = 0.6), very high lev-
els of immune evasion could explain the observed growth advantage 
without an additional increase in transmissibility (Fig. 4d). For high 
levels of population immunity against Delta (Ω = 0.8), even moderate 
levels of immune evasion (~25–50%) can explain the observed growth 
advantage without an additional increase in transmissibility (Fig. 4e). 
The results of seroprevalence studies and vaccination coverage (∼40% 
of the adult population in South Africa) suggest that the proportion 
of the population with potential immunity against Delta and earlier 
variants is probably above 60% (refs. 11,12). We therefore argue that the 
population level of protective immunity against Delta acquired during 
previous epidemic waves is high, and that partial immune evasion is 
a major driver for the observed dynamics of Omicron in South Africa. 
This notion is supported by recent findings that show an increased risk 
of SARS-CoV-2 reinfection associated with the emergence of Omicron 
in South Africa47 and the initial results from neutralization assays48. 
However, in addition to immune evasion, an increase or decrease in the 
transmissibility of Omicron compared with Delta cannot be ruled out.

There are a number of limitations to this analysis. First, we estimated 
the growth advantage of Omicron based on early sequence data only. 
These data could be biased due to targeted sequencing of SGTF sam-
ples and stochastic effects (such as superspreading) in a low-incidence 
setting, which can lead to overestimates of the growth advantage and, 
consequently, of the increased transmissibility and immune evasion. 
Second, without reliable estimates of the level of protective immunity 
against Delta in South Africa, we cannot obtain precise estimates of 
transmissibility or immune evasion of Omicron.

Conclusion
Strong genomic surveillance systems in South Africa and Botswana 
enabled the identification of Omicron within a week of observing a 
resurgence in cases in Gauteng province. Immediate notification of the 
WHO and early designation as a VOC has stimulated global scientific 
efforts and has given other countries time to prepare their response. 
Omicron is now driving a fourth wave of the SARS-CoV-2 epidemic in 
southern Africa, and is spreading rapidly in several other countries. 
Genotypic and phenotypic data suggest that Omicron has the capac-
ity for substantial evasion of neutralizing antibody responses, and 
modelling suggests that immune evasion could be a major driver of the 
observed transmission dynamics. Close monitoring of the spread of 
Omicron in countries outside southern Africa will be necessary to better 
understand its transmissibility and the capacity of this variant to evade 
post-infection and vaccine-elicited immunity. Neutralizing antibodies 
are only one component of the immune protection from vaccines and 
prior infection, and the cellular immune response is predicted to be less 
affected by the mutations in Omicron. Vaccination therefore remains 
critical to protect those who have the highest risk of severe disease and 
death. The emergence and rapid spread of Omicron poses a threat to 
the world and a particular threat in Africa, where fewer than one in ten 
people are fully vaccinated.
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Methods

Epidemiological dynamics
We analysed daily cases of SARS-CoV-2 in South Africa up to 14 Decem-
ber 2021 from publicly released data provided by the National Depart-
ment of Health and the National Institute for Communicable Diseases. 
This was accessible through the repository of the Data Science for 
Social Impact Research Group at the University of Pretoria (https://
github.com/dsfsi/covid19za)49,50. The National Department of Health 
releases daily updates on the number of confirmed new cases, deaths 
and recoveries, with a breakdown by province. Daily case numbers for 
Botswana were obtained through Our World in Data (OWID) COVID-19 
data repository (https://github.com/owid/covid-19-data). We obtained 
test positivity data from weekly reports from the National Institute for 
Communicable Diseases (NICD)51. Data to calculate the proportion of 
positive TaqPath COVID-19 PCR tests (Thermo Fisher Scientific) with 
SGTF in South Africa was obtained from the National Health Laboratory 
Service and Lancet Laboratories. Test positivity data for Botswana was 
obtained from the National Health Laboratory up to 6 December 2021. 
All data visualization was generated through the ggplot package in R52.

SARS-CoV-2 sampling
As part of the NGS-SA, seven sequencing hubs in South Africa receive 
randomly selected samples for sequencing every week according to 
approved protocols at each site53. These samples include remnant 
nucleic acid extracts or remnant nasopharyngeal and oropharyngeal 
swab samples from routine diagnostic SARS-CoV-2 PCR testing from 
public and private laboratories in South Africa. In response to a focal 
resurgence of COVID-19 in the City of Tshwane Metropolitan Municipal-
ity in Gauteng province in November, we enriched our routine sampling 
with additional samples from the affected area, including initial tar-
geted sequencing of SGTF samples. In Botswana, all public and private 
laboratories submit randomly selected residual nasopharyngeal and 
oropharyngeal PCR positive samples weekly to the National Health 
Laboratory (NHL) and the Botswana Harvard HIV Reference Laboratory 
(BHHRL) for sequencing.

Ethical statement
The genomic surveillance in South Africa was approved by the Uni-
versity of KwaZulu-Natal Biomedical Research Ethics Committee 
(BREC/00001510/2020), the University of the Witwatersrand Human 
Research Ethics Committee (HREC) (M180832), Stellenbosch Univer-
sity HREC (N20/04/008_COVID-19), University of Cape Town HREC 
(383/2020), University of Pretoria HREC (H101/17) and the Univer-
sity of the Free State Health Sciences Research Ethics Committee 
(UFS-HSD2020/1860/2710). The genomic sequencing in Botswana 
was conducted as part of the national vaccine roll-out plan and was 
approved by the Health Research and Development Committee (Health 
Research Ethics body, HRDC#00948 and HRDC#00904). Individual 
participant consent was not required for the genomic surveillance. This 
requirement was waived by the Research Ethics Committees.

Ion Torrent Genexus Integrated Sequencer methodology for 
rapid whole-genome sequencing of SARS-CoV-2
Viral RNA was extracted using the MagNA Pure 96 DNA and Viral 
Nucleic Acid kit on the automated MagNA Pure 96 system (Roche 
Diagnostics) according to the manufacturer’s instructions. Extracts 
were then screened by quantitative PCR to acquire the mean cycle 
threshold (Ct) values for the SARS-CoV-2 N and ORF1ab genes using 
the TaqMan 2019-nCoV assay kit v1 (Thermo Fisher Scientific) on the 
ViiA7 Real-time PCR system (Thermo Fisher Scientific) according to 
the manufacturer’s instructions. Extracts were sorted into batches of 
n = 8 within a Ct range difference of 5 for a maximum of two batches 
per run. Extracts with <200 copies were sequenced using the low viral 
titre protocol. Next-generation sequencing was performed using the 

Ion AmpliSeq SARS-CoV-2 Research Panel on the Ion Torrent Genexus 
Integrated Sequencer (Thermo Fisher Scientific), which combines auto-
mated cDNA synthesis, library preparation, templating preparation 
and sequencing within 24 h. The Ion Ampliseq SARS-CoV-2 Research 
Panel consists of two primer pools targeting 237 amplicons tiled across 
the SARS-CoV-2 genome providing >99% coverage of the SARS-CoV-2 
genome (~30 kb) and an additional five primer pairs targeting human 
expression controls. The SARS-CoV-2 amplicons range from 125 bp 
to 275 bp in length. TRINITY was used for de novo assembly and the 
Iterative Refinement Meta-Assembler (IRMA) was used for genome 
assisted assembly as well as FastQC for quality checks.

Whole-genome sequencing and genome assembly
RNA was extracted on an automated Chemagic 360 instrument, using 
the CMG-1049 kit (Perkin Elmer). The RNA was stored at −80 °C before 
use. Libraries for whole-genome sequencing were prepared using either 
the Oxford Nanopore Midnight protocol with Rapid Barcoding or the 
Illumina COVIDseq Assay.

Illumina Miseq/NextSeq. For the Illumina COVIDseq assay, the librar-
ies were prepared according to the manufacturer’s protocol. In brief, 
amplicons were tagmented, followed by indexing using the Nextera UD 
Indexes Set A. Sequencing libraries were pooled, normalized to 4 nM 
and denatured with 0.2 N sodium acetate. A 8 pM sample library was 
spiked with 1% PhiX (PhiX Control v3 adaptor-ligated library used as 
a control). We sequenced libraries using the 500-cycle v2 MiSeq Rea-
gent Kit on the Illumina MiSeq instrument (Illumina). On the Illumina 
NextSeq 550 instrument, sequencing was performed using the Illumina 
COVIDSeq protocol (Illumina), an amplicon-based next-generation 
sequencing approach. The first-strand synthesis was performed using 
random hexamers primers from Illumina and the synthesized cDNA 
underwent two separate multiplex PCR reactions. The pooled PCR 
amplified products were processed for tagmentation and adapter 
ligation using IDT for Illumina Nextera UD Indexes. Further enrich-
ment and clean-up was performed according to protocols provided 
by the manufacturer (Illumina). Pooled samples were quantified using 
the Qubit 3.0 or 4.0 fluorometer (Invitrogen) and the Qubit dsDNA 
High Sensitivity assay kit according to the manufacturer’s instructions.  
The fragment sizes were analysed using the TapeStation 4200 (Invitro-
gen). The pooled libraries were further normalized to 4 nM concentra-
tion, and 25 μl of each normalized pool containing unique index adapter 
sets was combined into a new tube. The final library pool was denatured 
and neutralized with 0.2 N sodium hydroxide and 200 mM Tris-HCl 
(pH 7), respectively. Sample library (1.5 pM) was spiked with 2% PhiX. 
Libraries were loaded onto a 300-cycle NextSeq 500/550 HighOutput 
Kit v2 and run on the Illumina NextSeq 550 instrument (Illumina).

Midnight protocol. For Oxford Nanopore sequencing, the Midnight 
primer kit was used as described previously54. cDNA synthesis was 
performed on the extracted RNA using the LunaScript RT mastermix 
(New England BioLabs) followed by gene-specific multiplex PCR us-
ing the Midnight primer pools, which produce 1,200 bp amplicons 
that overlap to cover the 30 kb SARS-CoV-2 genome. Amplicons from 
each pool were pooled and used neat for barcoding with the Oxford 
Nanopore Rapid Barcoding kit according to the manufacturer’s pro-
tocol. Barcoded samples were pooled and bead-purified. After the 
bead clean-up, the library was loaded on a prepared R9.4.1 flow-cell.  
A GridION X5 or MinION sequencing run was initiated using MinKNOW 
software with the base-call setting switched off.

Genome assembly. We assembled paired-end and Nanopore .fastq 
reads using Genome Detective v.1.132 (https://www.genomedetec-
tive.com), which was updated for the accurate assembly and variant 
calling of tiled primer amplicon Illumina or Oxford Nanopore reads, 
and the Coronavirus Typing Tool55. For Illumina assembly, the GATK 
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HaploTypeCaller --min-pruning 0 argument was added to increase 
mutation calling sensitivity near sequencing gaps. For Nanopore, 
low-coverage regions with poor alignment quality (<85% variant ho-
mogeneity) near sequencing/amplicon ends were masked to be robust 
against primer drop-out experienced in the spike gene, and the sensi-
tivity for detecting short inserts using a region-local global alignment 
of reads was increased. We also used the wf_artic (ARTIC SARS-CoV-2) 
pipeline as built using the Nextflow workflow framework56. In some 
instances, mutations were confirmed visually with .bam files using 
Geneious v.2020.1.2 (Biomatters). The reference genome used through-
out the assembly process was NC_045512.2 (numbering equivalent to 
MN908947.3).

Raw reads from the Illumina COVIDSeq protocol were assembled 
using the Exatype NGS SARS-CoV-2 pipeline v.1.6.1 (https://sars-cov-2.
exatype.com/). This pipeline performs quality control on reads and 
then maps the reads to a reference using Examap. The reference genome 
used throughout the assembly process was NC_045512.2 (accession 
number: MN908947.3).

Several of the initial Ion Torrent genomes contained a number of 
frameshifts, which caused unknown variant calls. Manual inspec-
tion revealed that these were probably sequencing errors resulting 
in mis-assembled regions (probably due to the known error profile 
of Ion Torrent sequencers)57. To resolve this, the raw reads from the 
IonTorrent platform were assembled using the SARSCoV2 RECoVERY 
(Reconstruction of Coronavirus Genomes & Rapid Analysis) pipe-
line implemented in the Galaxy instance ARIES (https://aries.iss.it).  
This pipeline fixed the observed frameshifts, confirming that they were 
artefacts of mis-assembly; this subsequently resolved the variant calls. 
The Exatype and RECoVERY pipelines each produce a consensus sequence 
for each sample. These consensus sequences were manually inspected 
and polished using Aliview v.1.27 (http://ormbunkar.se/aliview/).

All of the sequences were deposited in GISAID (https://www.gisaid.
org/)15,16, and the GISAID accession identifiers are included in Supple-
mentary Table 1. Raw reads for our sequences have also been deposited 
at the NCBI Sequence Read Archive (BioProject: PRJNA784038).

The number and position of the Omicron mutations has affected 
a number of primers and caused primer drop-outs across a range of 
sequencing protocols, especially within the RBD (https://primer- 
monitor.neb.com/lineages). These primer drop-outs have resulted 
in a number of genomes missing stretches of the RBD, and can affect 
estimates of mutation prevalence and the determination of the true 
set of lineage-defining mutations. Given this, .bam files of all initial 
genomes were inspected using IG Viewer to confirm mutation calls 
where reference calls were suspected to be from low coverage at primer 
dropout sites58.

Lineage classification. We used the widespread dynamic lineage clas-
sification method from the Phylogenetic Assignment of Named Global 
Outbreak Lineages (PANGOLIN) software suite (https://github.com/
hCoV-2019/pangolin)17. This is aimed at identifying the most epide-
miologically important lineages of SARS-CoV-2 at the time of analysis, 
enabling researchers to monitor the epidemic in a particular geographi-
cal region. For the Omicron variant described in this study, the cor-
responding PANGO lineage designation is BA.1 (lineages v.1.2.106). 
When first characterized, the lineage was designated B.1.1.529, but the 
emergence of three sibling lineages to Omicron resulted in the split into 
sublineages (B.1.1.529.1, B.1.1.529.2 and B.1.1.529.3, aliased as BA.1, BA.2 
and BA.3). BA.1 contains all the genomes with the original mutational 
constellation that was designated as Omicron and, at time of writing, 
is the dominant sublineage.

Recombination testing. To test for the possibility that the Omicron 
lineage (including BA.1, BA.2 and BA.3) is a recombinant of other 
SARS-CoV-2 lineages, we used a global subsample of sequences span-
ning January 2021 to August 2021. Using the NCBI SARS-CoV-2 Data 

hub59,60, we constructed a dataset containing 221 sequences by ran-
domly sampling five sequences from each month for each continent. 
No Oceania samples were available from July or August, and no South 
American sequences were available from July 2021 (ref. 61). These se-
quences were aligned together with a set of five high-quality BA.1, six 
BA.2 and one BA.3 sequences (representing the known diversity of these 
clades on 5 December 2021) using MAFFT62 with the default settings. 
Whereas 3SEQ37 and RDP5 (ref. 38) were used to analyse this dataset, a 
subsample of the 39 most divergent sequences from the dataset was 
analysed using the GARD recombination detection method36. As none 
of these recombination detection methods normally use potentially 
informative deletion patterns, deletions in these alignments were re-
coded as nucleotide substitutions (one substitution per contiguous 
run of deleted nucleotides). Furthermore, to minimize multiple testing 
issues, BA.1, BA.2 and BA.3 were tested for evidence of recombination 
among one another using individual sequences from each of these 
lineages (CERI-KRISP-K032254, EPI_ISL_7190366 and EPI_ISL_7526186, 
respectively) together with the Wuhan-Hu-1 sequence (which served 
as a reference point for rooting the four taxon phylogeny). The default 
program settings were used throughout for recombination analyses, 
with the exception of RDP5 analysis, in which sequences were treated 
as linear and the window sizes for the SiScan and BootScan methods 
(two of the seven recombination detection methods applied in RDP5) 
were changed to 2,000 nucleotides.

Selection analyses. We investigated the nature and extent of selective 
forces acting on BA.1, BA.2 and BA.3 genes encoding individual protein 
products (respectively, a median of 110, 3 and 2.5 unique BA.1, BA.2 
and BA.3 sequences per protein product encoding genome region). 
A subset of publicly available sequences (from the Virus Pathogen 
Database and Analysis Resource (ViPR); https://www.viprbrc.org/) 
was included as background sequences to contextualize selection 
signals detectable within the BA.1, BA.2 and BA.3 lineages at the levels 
of complete protein product encoding regions, and individual codons 
(a median of ~100 sequences per protein coding region). Sequences 
were selected, quality-checked, aligned, and processed for BUSTED, 
RELAX, MEME, FADE, FEL and BGM selection analyses (all implemented 
in HyPhy v.2.5.33)63 using the automated RASCL pipeline as outlined 
previously2,9,34.

Structure modelling. We modelled the spike protein on the basis of 
the Protein Data Bank coordinate set 7A94, showing the first step of the 
spike protein trimer activation with one RBD domain in the up position, 
bound to the human ACE2 receptor64. We used Pymol (The PyMOL 
Molecular Graphics System, v.2.2.0) for visualization.

Phylogenetic analysis. All sequences on GISAID15,16 designated Omi-
cron (n = 686; date of access: 7 December 2021) were analysed against 
a globally representative reference set of SARS-CoV-2 genotypes 
(n = 12,609) spanning the entire genetic diversity observed since the 
start of the pandemic. In brief, the reference set included: (1) all ge-
nomes from Africa assigned to PANGO lineage B.1.1 or any of its descend-
ents, excluding those belonging to a VOC clade; (2) a representative 
subsampling of global data from the publicly maintained global build 
of Nexstrain (https://nextstrain.org/ncov/gisaid/global); and (3) the 
top thirty BLAST hits when querying GISAID BLAST for BA.1 and BA.2 
sequences. This sampling scheme ensures that we analyse Omicron 
against the closest variants of the virus. Omicron and reference se-
quences were aligned using Nextalign65. A maximum-likelihood tree 
topology was inferred in FastTree66 under the following parameters: a 
General Time Reversible model of nucleotide substitution and a total 
of 100 bootstrap replicates67. The resulting maximum-likelihood tree 
topology was transformed into a time-calibrated phylogeny in which 
branches along the tree were scaled in calendar time using TreeTime68. 
The resulting tree was then visualized and annotated in ggtree in R69. 
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Additional BA.2 (n = 148) and BA.3 (n = 19) sequences were added to the 
above phylogeny after review to clarify the evolutionary relationship 
between BA.1, BA.2 and BA.3 (Extended Data Fig. 4c, d).

Time-calibrated BEAST analysis. To estimate a time-scale and growth 
rate from the genome sequencing data, BEAST (v.1.10.4)70,71 was used 
to sample phylogenetic trees under an exponential growth coalescent 
model using a strict molecular clock. All BA.1-assigned genomes from 
South Africa and Botswana (as of 11 December 2021) were included, 
with some lower coverage genomes removed, leaving a total of 553 
genomes. The single South African BA.2 genome (CERI-KRISP-K032307, 
EPI_ISL_6795834) was included to help to stabilize the root of the BA.1 
clade but the exponential growth coalescent model was applied only 
to BA.1 (a constant population size coalescent was used for the rest 
of the tree). The rate of molecular evolution was estimated from the 
data. Two runs of 100 million iterations were compared to assess con-
vergence, and then post-burnin samples were pooled to summarize 
parameter estimates.

Birth–death phylogenetic analysis. We analysed the full South Af-
rica and Botswana dataset (n = 552, all BA.1 assigned), and the reduced 
dataset containing only Gauteng province genomes (n = 277) using the 
serially sampled birth–death skyline (BDSKY) model19, implemented in 
BEAST2 (v.2.5.2)72. To allow for changes in genomic sampling intensity 
shortly after the discovery of the new lineage, we allowed the sampling 
proportion to vary with time while keeping all other models parameters 
constant over the study period. The choice of prior distributions for the 
model parameters is summarized in Extended Data Table 3.

For each analysis, we used an HKY substitution model and a strict 
clock model with a fixed clock rate of 0.75 × 10−3 and 1.1 × 10−3 substitu-
tions per site per year (s.s.y.) for the full South Africa and Botswana 
dataset, and Gauteng province-only dataset, respectively. To allow for 
comparisons with the exponential growth coalescent model, we also 
repeated the analyses with clock rates fixed at those estimated from the 
coalescent analyses (1.2 × 10−3 and 0.3 × 10−3 s.s.y.). The mean duration 
of infectiousness was fixed at 10 days73,74. The effective reproduction 
number, Re, was assumed to be constant through time. The sampling 
proportion was assumed to be 0 before the collection time of the oldest 
sample and allowed to change at fixed times that were approximately 
equidistantly spaced between the oldest sample and the most recent 
sample. For Markov chain Monte Carlo (MCMC) analyses of the full South 
Africa and Botswana dataset, the maximum clade credibility tree from 
the exponential growth coalescent model was used as the starting tree. 
We kept the tree topology fixed, estimating only internal node heights.

To assess the robustness of our estimates of Re under different 
assumptions of temporal variations in the sampling proportion, we 
repeated the analyses with 3 instead of 4 equidistant change-time 
points. All of the other model parameters and priors were kept the same.

For each analysis, we ran two independent chains of 100 million 
MCMC steps and sampled parameters every 10,000 steps. We used 
Tracer (v.1.7)75 to evaluate MCMC convergence for each of the individual 
chains (effective sample size (ESS) > 200), which were then combined 
using LogCombiner to obtain the final posterior distribution after 
removing 10% of each chain as burn-in. The results were analysed 
using the bdskytools package in R (https://github.com/laduplessis/
bdskytools).

The resulting estimates for the time of the most recent common 
ancestor, exponential growth rate and doubling time are summarized 
in Extended Data Tables 4 and 5. With fixed clock rates of 0.75 × 10−3 
and 1.1 × 10−3 s.s.y. for the full South Africa and Botswana dataset and 
Gauteng province-only dataset, respectively, the 3-epoch and 4-epoch 
BDSKY models resulted in similar estimates of the effective reproduc-
tion number, Re, for both datasets: 2.74 (95% HPD = 2.56–2.92) and 2.79 
(95% HPD = 2.60–2.97) for the South Africa and Botswana dataset, and 
3.86 (95% HPD = 3.43–4.29) and 3.61 (95% HPD = 3.20–4.02) for the 

Gauteng province-only dataset. Using a faster clock rate led to more 
recent common ancestors and higher estimates of the effective repro-
duction number and growth rate.

We examined the sensitivity of our estimates to different assump-
tions regarding the average duration of infectiousness by repeating the 
analysis of the South Africa and Botswana dataset with different fixed 
values of the becoming non-infectious rate: 52.1 per year and 26.1 per 
year, which translate to an infectious period of 7 and 14 days, respec-
tively. These values were selected as plausible bounds based on the 
infectious period of asymptomatic cases and the time from symptom 
onset to two negative RT–PCR tests74. The 4-epoch model was used with 
a fixed clock rate of 0.75 × 10−3 s.s.y. in these analyses. For each analysis, 
we ran three independent chains of 35 million MCMC steps and sampled 
parameters every 10,000 steps. We used Tracer (v.1.7)75 to evaluate 
MCMC convergence for each of the individual chains (ESS > 200), which 
were then combined using LogCombiner to obtain the final posterior 
distribution after removing 10% of each chain as burn-in.

The results from the sensitivity analyses showed that our estimates 
are largely robust to alternative assumptions about the infectious 
period. On doubling of the mean duration of infectiousness from  
7 to 14 days, the TMRCA remained mostly the same (10 October 2021 
(95% HPD = 2 October–17 October) compared with 11 October 2021  
(95% HPD = 3 October–17 October), while the doubling time shifted 
from 4.4 (95% HPD = 3.9–5.0) days to 3.5 (95% HPD = 3.2–3.9) days.  
This change in the doubling time is partially explained by differing esti-
mates of the sampling proportion. For most of the epochs, the sampling 
proportion increases with the doubling time to explain the same number 
of sequences observed in each instance, that is, if we assume a shorter 
average duration of infectiousness, then we infer a slower transmission 
of which a greater proportion of sequences has been sampled.

Phylogeographic analysis. MCMC analyses were run in duplicate in 
BEAST (v.1.10.4)70,71 for a total of 100 million iterations sampling every 
10,000 steps in the chain. Convergence of runs was assessed in Tracer 
(v.1.7.1)75 based on high effective sample sizes (>200) and good mixing 
in the chains. Maximum clade credibility trees for each run were sum-
marized in TreeAnnotator after discarding the first 10% of the chain as 
burn in. Finally, the spatiotemporal dispersal of Omicron was mapped 
using the R package seraphim76.

Estimating transmission advantage. We analysed 805 SARS-CoV-2 se-
quences from Gauteng, South Africa, that were uploaded to GISAID with 
sample collection dates from 1 September to 1 December 2021 (ref. 15).  
We used a multinomial logistic regression model to estimate the growth 
advantage of Omicron compared with Delta at the time point at which 
the proportion of Omicron reached 50% (refs. 77,78). We fitted the model 
using the multinom function of the nnet package and estimated the 
growth advantage using the package emmeans in R.

The difference in the net growth rates (that is, the growth advantage) 
between a variant (Omicron) and the wild type (Delta) can be expressed 
as follows:79

ρ τ β S ϵ S βS= (1 + ) ( + (1 − )) − ,

where τ is the increase of the intrinsic transmissibility, ϵ is the level of 
immune evasion, β is the transmission rate of the wild type and S is the 
proportion of the population that is susceptible to the wild type. This 
relationship can be algebraically solved for τ and ϵ. We further define 
Rw = βSD as the effective reproduction number of the wild-type with D 
being the generation time. Ω = 1 − S corresponds to the proportion of 
the population with protective immunity against infection and subse-
quent transmission with the wild type.

We estimated ϵ for different levels of τ and Ω. To propagate the uncer-
tainty, we constructed 95% credible intervals (CIs) of the estimates from 
10,000 parameter samples of ρ, D and Rw. We assumed D to be normally 
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distributed with a mean of 5.2 days and a s.d. of 0.8 days (ref. 80).  
We sampled from publicly available estimates of the daily Rw based on 
confirmed cases during the early growth phase of Omicron in South 
Africa (1 October–31 October 2021; range = 0.78–0.85) (https://github.
com/covid-19-Re)81.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
All SARS-CoV-2 whole-genome sequences produced by NGS-SA are 
deposited in the GISAID sequence database and are publicly available 
subject to the terms and conditions of the GISAID database. The GISAID 
accession numbers of sequences used in the phylogenetic analysis, 
including Omicron and global references, are provided in the Supple-
mentary Table 1. Raw reads for our sequences have also been deposited 
at the NCBI Sequence Read Archive (SRA) (BioProject: PRJNA784038). 
Other raw data for this study are provided as a supplementary dataset 
at our GitHub repository (https://github.com/krisp-kwazulu-natal/
SARSCoV2_Omicron_Southern_Africa). The reference SARS-CoV-2 
genome (MN908947.3) was downloaded from the NCBI database 
(https://www.ncbi.nlm.nih.gov/). Other publicly available data used 
in this study are as follows: NCBI SARS-CoV-2 Data Hub (https://www.
ncbi.nlm.nih.gov/sars-cov-2/), Protein Data Bank coordinate set 7A94 
(https://www.rcsb.org/), Nexstrain global build (https://nextstrain.
org/ncov/gisaid/global), Covid-19 Re repository (https://github.com/
covid-19-Re), daily Covid-19 case numbers from the Data Science for 
Social Impact Research Group at the University of Pretoria (https://
github.com/dsfsi/covid19za), daily case numbers from OWID (https://
github.com/owid/covid-19-data) and the Virus Pathogen Database and 
Analysis Resource (ViPR) (https://www.viprbrc.org/).

Code availability
All input files (such as raw data for figures, alignments or XML files), 
along with all resulting output files and scripts used in the present study 
are publicly shared at GitHub (https://github.com/krisp-kwazulu-natal/
SARSCoV2_Omicron_Southern_Africa).
 
50. Marivate, V. et al. Coronavirus disease (COVID-19) case data—South Africa. Zenodo 

https://doi.org/10.5281/zenodo.3819126 (2020).
51. NICD. Weekly Testing Summary; https://www.nicd.ac.za/diseases-a-z-index/disease- 

index-covid-19/surveillance-reports/weekly-testing-summary/ (accessed 22 December 
2021).

52. Wickham, H. ggplot2. WIREs Comp. Stat. 3, 180–185 (2011).
53. Msomi, N., Mlisana, K. & de Oliveira, T. A genomics network established to respond 

rapidly to public health threats in South Africa. Lancet Microbe 1, e229–e230 (2020).
54. Freed, N. & Silander, O. SARS-CoV2 genome sequencing protocol (1200bp amplicon 

“midnight” primer set, using Nanopore Rapid kit). Protocols.io https://doi.org/10.17504/
protocols.io.bwyppfvn (2021).

55. Cleemput, S. et al. Genome Detective Coronavirus Typing Tool for rapid identification  
and characterization of novel coronavirus genomes. Bioinformatics 36, 3552–3555 
(2020).

56. Wright, C. & Parker, M. epi2me-labs/wf-artic: ARTIC SARS-CoV-2 workflow and reporting 
(GitHub); https://github.com/epi2me-labs/wf-artic#readme (2021).

57. Bragg, L. M., Stone, G., Butler, M. K., Hugenholtz, P. & Tyson, G. W. Shining a light on dark 
sequencing: characterising errors in Ion Torrent PGM data. PLoS Comput. Biol. 9, 
e1003031 (2013).

58. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).
59. Hatcher, E. L. et al. Virus Variation Resource—improved response to emergent viral 

outbreaks. Nucleic Acids Res. 45, D482–D490 (2017).
60. National Library of Medicine. NCBI Virus: SARS-CoV-2 Data Hub; https://www.ncbi.nlm.

nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=SARS-CoV-2,%20
taxid:2697049 (accessed 1 December 2021).

61. Boni, M. covid19-omicron-origins-recombination (GitHub); https://github.com/bonilab/co
vid19-omicron-origins-recombination/blob/main/4%20GS5%20plus%20Canada%20
Outlier%20Lineage/4.2%20aligned_mafft_addfrag_wref/aligned_234.shortnames.afa 
(2021).

62. Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple 
sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 
(2002).

63. Kosakovsky Pond, S. L. et al. HyPhy 2.5—a customizable platform for evolutionary 
hypothesis testing using phylogenies. Mol. Biol. Evol. 37, 295–299 (2020).

64. Benton, D. J. et al. Receptor binding and priming of the Spike protein of SARS-CoV-2 for 
membrane fusion. Nature 588, 327–330 (2020).

65. Aksamentov, I., Roemer, C., Hodcroft, E. & Neher, R. Nextclade: clade assignment, 
mutation calling and quality control for viral genomes. J. Open Source Softw. 6, 3773 
(2021).

66. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood 
trees for large alignments. PLoS ONE 5, e9490 (2010).

67. Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap. 
Evolution 39, 783–791 (1985).

68. Sagulenko, P., Puller, V. & Neher, R. A. TreeTime: maximum-likelihood phylodynamic 
analysis. Virus Evol. 4, vex042 (2018).

69. Yu, G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinform. 69, 
e96 (2020).

70. Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using 
BEAST 1.10. Virus Evol. 4, vey016 (2018).

71. Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with 
BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

72. Bouckaert, R. et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary 
analysis. PLoS Comput. Biol. 15, e1006650 (2019).

73. Benvenuto, D. et al. The global spread of 2019-nCoV: a molecular evolutionary analysis. 
Pathog. Glob. Health 114, 64–67 (2020).

74. Byrne, A. W. et al. Inferred duration of infectious period of SARS-CoV-2: rapid scoping 
review and analysis of available evidence for asymptomatic and symptomatic COVID-19 
cases. BMJ Open 10, e039856 (2020).

75. Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization 
in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).

76. Dellicour, S., Rose, R., Faria, N. R., Lemey, P. & Pybus, O. G. SERAPHIM: studying 
environmental rasters and phylogenetically informed movements. Bioinformatics 32, 
3204–3206 (2016).

77. Davies, N. G. et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in 
England. Science 372, eabg3055 (2021).

78. Campbell, F. et al. Increased transmissibility and global spread of SARS-CoV-2 variants of 
concern as at June 2021. Euro Surveill. 26, 2100509 (2021).

79. Althaus, C. L. et al. A tale of two variants: spread of SARS-CoV-2 variants Alpha in  
Geneva, Switzerland, and Beta in South Africa. Preprint at medRxiv https://doi.org/ 
10.1101/2021.06.10.21258468 (2021).

80. Ganyani, T. et al. Estimating the generation interval for coronavirus disease (COVID-19) 
based on symptom onset data, March 2020. Euro Surveill. 25, 2000257 (2020).

81. Huisman, J. S. et al. Estimation and worldwide monitoring of the effective reproductive 
number of SARS-CoV-2. Preprint at medRxiv https://doi.org/10.1101/2020.11.26.20239368 
(2020).

82. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of 
large phylogenies. Bioinformatics 30, 1312–1313 (2014).

83. Boni, M. F. et al. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible 
for the COVID-19 pandemic. Nat. Microbiol. 5, 1408–1417 (2020).

Acknowledgements We thank L. de Gouveia, A. Buys, C. Fourie, N. Duma, M. Ndlovu and other 
members of the NICD Centre for Respiratory Diseases and Meningitis and Sequencing Core 
Facility; N. Govender, G. Ntshoe, A. Moipone Shonhiwa, D. Muganhiri, I. Matiea, E. Mathatha,  
F. Gavhi, T. Mashudu Lamola, M. Makhubele, M. Matjokotja, S. Mdleleni, M. Makhubela from the 
national SARS-CoV-2 NICD surveillance team for NMCSS case data; F. Mckenna, T. Graham 
Bell, N. Munava, S. Kwenda, M. Raza Bano and J. Khosa from NICD IT for NMCSS case and test 
data (in particular, SGTF data); and the following people from the diagnostic laboratories for 
their assistance: K. Reddy, L. Gounder and C. Naicker from NHLS Inkosi Albert Luthuli Central 
Hospital Laboratory, S. Korsman from the NHLS Groote Schuur Laboratory, and A. Enoch at 
NHLS Green Point Laboratory; the staff at the global laboratories who generated and made 
public the SARS-CoV-2 sequences (through GISAID) used as reference dataset in this study  
(a complete list of individual contributors of sequences is provided in Supplementary Table 1). 
The research reported in this publication was supported by the Strategic Health Innovation 
Partnerships Unit of the South African Medical Research Council, with funds received from the 
South African Department of Science and Innovation. Sequencing activities at KRISP and CERI 
were supported in part by the WHO, the National Institutes of Health (NIH) (U01 AI151698) for 
the United World Antivirus Research Network (UWARN), and the Rockefeller Foundation (grants 
2021 HTH 017 and 2020 HTH 062). C.L.A. received funding from the European Union’s Horizon 
2020 research and innovation programme, project EpiPose (no. 101003688). D.P.M. was 
funded by the Wellcome Trust (222574/Z/21/Z). R.C. and A.R. acknowledge support from the 
Wellcome Trust (Collaborators Award 206298/Z/17/Z, ARTIC network) and A.R. from the 
European Research Council (no. 725422, ReservoirDOCS). V.H. was supported by the 
Biotechnology and Biological Sciences Research Council (BBSRC) (grant no. BB/M010996/1). 
A.E.Z., J.T., M.U.G.K. and O.G.P. acknowledge support from the Oxford Martin School. M.U.G.K. 
acknowledges support from the Rockefeller Foundation, Google.org, and the European 
Horizon 2020 programme MOOD (no. 874850). M.V. and the members of the Zoonotic Arbo 
and Respiratory Virus Program, UP was funded through the ANDEMIA G7 Global Health 
Concept: contributions to improvement of International Health, COVID-19 funds through the 
Robert Koch Institute. The genomic sequencing at UCT/NHLS is funded from the South African 
Medical Research Council and Department of Science and Innovation; and by the Wellcome 
Centre for Infectious Diseases Research in Africa (CIDRI-Africa), which is supported by core 
funding from the Wellcome Trust (203135/Z/16/Z and 222754). C.W. and J.B. are funded by the 
EDCTP (RADIATES Consortium; RIA2020EF-3030). Sequencing activities at the NICD were 
supported by a conditional grant from the South African National Department of Health as part 
of the emergency COVID-19 response; a cooperative agreement between the National Institute 
for Communicable Diseases of the National Health Laboratory Service and the United States 
Centers for Disease Control and Prevention (no. 5U01IP001048-05-00); the African Society of 
Laboratory Medicine (ASLM) and Africa Centers for Disease Control and Prevention through a 

https://github.com/covid-19-Re
https://github.com/covid-19-Re
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA784038
https://github.com/krisp-kwazulu-natal/SARSCoV2_Omicron_Southern_Africa
https://github.com/krisp-kwazulu-natal/SARSCoV2_Omicron_Southern_Africa
https://www.ncbi.nlm.nih.gov/nuccore/MN908947.3
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/sars-cov-2/
https://www.ncbi.nlm.nih.gov/sars-cov-2/
https://doi.org/10.2210/pdb7A94/pdb
https://www.rcsb.org/
https://nextstrain.org/ncov/gisaid/global
https://nextstrain.org/ncov/gisaid/global
https://github.com/covid-19-Re
https://github.com/covid-19-Re
https://github.com/dsfsi/covid19za
https://github.com/dsfsi/covid19za
https://github.com/owid/covid-19-data
https://github.com/owid/covid-19-data
https://www.viprbrc.org/
https://github.com/krisp-kwazulu-natal/SARSCoV2_Omicron_Southern_Africa
https://github.com/krisp-kwazulu-natal/SARSCoV2_Omicron_Southern_Africa
https://doi.org/10.5281/zenodo.3819126
https://www.nicd.ac.za/diseases-a-z-index/disease-index-covid-19/surveillance-reports/weekly-testing-summary/
https://www.nicd.ac.za/diseases-a-z-index/disease-index-covid-19/surveillance-reports/weekly-testing-summary/
https://doi.org/10.17504/protocols.io.bwyppfvn
https://doi.org/10.17504/protocols.io.bwyppfvn
https://github.com/epi2me-labs/wf-artic#readme
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=SARS-CoV-2,%20taxid:2697049
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=SARS-CoV-2,%20taxid:2697049
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=SARS-CoV-2,%20taxid:2697049
https://github.com/bonilab/covid19-omicron-origins-recombination/blob/main/4%20GS5%20plus%20Canada%20Outlier%20Lineage/4.2%20aligned_mafft_addfrag_wref/aligned_234.shortnames.afa
https://github.com/bonilab/covid19-omicron-origins-recombination/blob/main/4%20GS5%20plus%20Canada%20Outlier%20Lineage/4.2%20aligned_mafft_addfrag_wref/aligned_234.shortnames.afa
https://github.com/bonilab/covid19-omicron-origins-recombination/blob/main/4%20GS5%20plus%20Canada%20Outlier%20Lineage/4.2%20aligned_mafft_addfrag_wref/aligned_234.shortnames.afa
https://doi.org/10.1101/2021.06.10.21258468
https://doi.org/10.1101/2021.06.10.21258468
https://doi.org/10.1101/2020.11.26.20239368


subaward from the Bill and Melinda Gates Foundation grant no. INV-018978; the UK Foreign, 
Commonwealth and Development Office and Wellcome (no. 221003/Z/20/Z); the South 
African Medical Research Council (SHIPNCD 76756); the UK Department of Health and Social 
Care, managed by the Fleming Fund and performed under the auspices of the SEQAFRICA 
project. The genomic sequencing in Botswana was supported by the Foundation for Innovative 
New Diagnostics and Fogarty International Center (5D43TW009610), NIH (5K24AI131924-04; 
5K24AI131928-05) and support from the Botswana government through the Ministry of Health 
& Wellness and Presidential COVID-19 Task Force. S. Moyo. was supported in part by the Bill & 
Melinda Gates Foundation (036530). Under the grant conditions of the Foundation, a Creative 
Commons Attribution 4.0 Generic License has already been assigned to the Author Accepted 
Manuscript version that might arise from this submission.

Author contributions Genomic data generation: R.V., S. Moyo, D.G.A., H.T., C.S., J.G., J.E., S.G., 
W.T.C., D.M., B.Z., B.R., L.K., R.S., S.L., M.B.M., P.S.-L., M. Matshaba, M. Mosepele, K. Masupu, 
A. Mnguni, A. Ismail, B.M., M.S.M., J.E.S., N.N., G. Motsatsi., S.P., G. Marais, T. Mohale, U.R., Y.N., 
C.W., S.E., T. Maponga, W.P., L. Singh, U.J.A., M. Moir, S.v.W., D.T., K.D., D.H., D.D., R.J., 
A. Iranzadeh, D.G., P.A.B, M.N., P.N.M. and J.B. Sample collection and metadata curation: R.V., 
S. Moyo, D.G.A., A. Mendes, A.S., M.D., S. Mayaphi, W.T.C., D.M., P.S.-L., M.C., C.J., L.K.-L., O.L.-A., 

K. Mahlakwane, N.T., N.-Y.H., N. Msomi, K. Moruisi, A.S., A. Maharaj, M.D., Z.M., O.L.-M., Y.R.,  
K.S., D.G., P.A.B., F.T. and M.V. Data analysis: H.T., C.S., R.J.L., N.W., J.E., A.R., C.L.A., E.W., C.K.W., 
D.P.M., V.H., R.C., J.E.S., M.G., S.P., A.G.L., S.W., M.F.B., A.E.Z., J.T., L.d.P., M.U.G.K. and O.G.P. 
Study design and data interpretation: R.V., S. Moyo, D.G.A., R.J.L., A.R., C.L.A., S.G., 
M. Matshaba, M. Mosepele, K. Mlisana, L.K.-L., O.L.-M., M.S.M., K. Moruisi, C.W., L.d.P., O.G.P., 
A.G., F.T., M.V., J.B., A.v.G. and T.d.O. Manuscript writing: S. Moyo, H.T., R.J.L., J.G., J.E., A.R., 
C.L.A., E.W., D.P.M., J.B., A.v.G. and T.d.O. All of the authors reviewed the manuscript.

Competing interests The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at 
https://doi.org/10.1038/s41586-022-04411-y.
Correspondence and requests for materials should be addressed to Tulio de Oliveira.
Peer review information Nature thanks Katia Koelle, Tommy Tsan-Yuk Lam and Michael 
Worobey for their contribution to the peer review of this work. Peer reviewer reports are 
available.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://doi.org/10.1038/s41586-022-04411-y
http://www.nature.com/reprints


Article

Extended Data Fig. 1 | Progression of daily recorded cases and variant 
proportions in Gauteng (A), KwaZulu-Natal (B) and Western Cape (C) 
provinces between October and December 2021. A sharp increase in the 

7-day rolling average of the number of cases is observed in all three of the 
biggest provinces in South Africa at the emergence of the Omicron variant.



Extended Data Fig. 2 | Epidemic Progression in Botswana. A) Epidemic and 
variant dynamics in Botswana from May 2020 to December 2021, with the 7-day 
rolling average of the number of recorded cases coloured by the proportion of 
variants as inferred by genomic surveillance data available on GISAID. At the 

end of November 2021, a big Delta-driven wave was coming to its end and an 
Omicron wave was starting at the end of November 2021. B) Trends in testing 
numbers and positivity rates in Botswana between October and December 
2021, showing a sharp increase in positivity rate mid-November 2021.
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Extended Data Fig. 3 | Global distribution of Omicron. (A) Detection of 
Omicron globally. Shown are the locations for which Omicron genomes have 
been deposited on GISAID as of December 16, 2021. Those labelled as 
“reported” referred to the country from which Omicron has been reported to 
the WHO but there is currently no sequencing data available in GISAID, all data 
comes from GISAID and the WHO weekly epidemiology report Edition 70 dated 
December 14, 2021 (https://reliefweb.int/sites/reliefweb.int/files/resources/ 
20211207_Weekly_Epi_Update_69-%281%29.pdf). Countries are coloured 
according to the number of genomes deposited with warmer colours 

representing more genomes. (B) Omicron transmission globally. Shown are 
countries for which Omicron sequencing data is available on GISAID. 
Proportions of sequences are coloured according to sampling strategy or 
additional host/location information from either travel history, targeted 
sequencing (specifically for SGTF, vaccine breakthroughs, outbreaks, contact 
tracing or other reasons), routine surveillance or unknown if no information 
has been provided. Countries are ordered by the number of sequences 
available on GISAID as of December 16, 2021.

https://reliefweb.int/sites/reliefweb.int/files/resources/20211207_Weekly_Epi_Update_69-%281%29.pdf
https://reliefweb.int/sites/reliefweb.int/files/resources/20211207_Weekly_Epi_Update_69-%281%29.pdf


Extended Data Fig. 4 | Related Lineages BA.2 and BA.3 Molecular Profile 
and Evolutionary Origins. A) Amino-acid mutations on the spike gene of the 
BA.2 B) Amino-acid mutations on the spike gene of the BA.3 C) Raw maximum 
likelihood phylogeny of 13,462 SARS-CoV-2 genomes, including 148 BA.2 and 19 

BA.3. The newly identified SARS-CoV-2 Omicron variant is shown in colour 
versus grey for all other lineages. D) A zoomed-in view of the Omicron clade 
showing the evolutionary relationship between BA.1, BA.2 and BA.3.
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Extended Data Fig. 5 | BA.1 spike mutations shared with other VOC/VOIs.  
All spike mutations seen in BA.1 are listed at the top in red and coloured 
according to prevalence. Prevalence was calculated by number of mutation 
detections / total number of sequences. However, primer drop-outs have 
affected the RBD region spanning K417N, N440K and G446S, and so it is likely 
that these mutations may actually be more prevalent than indicated here.  

For the VOC/VOIs only mutations that are shared with Omicron and seen in 
≥50% of the respective VOC/VOI sequences are shown and are coloured 
according to Nextstrain clade. The mutations listed at the bottom are shaded 
according to known immune escape (blue), enhanced infectivity (green) or for 
unknown/unconfirmed impact (red).



Extended Data Fig. 6 | Maximum-likelihood trees (inferred with RAxML 
v8.2.1282) for genome regions bounding the consensus recombination 
breakpoints detected in lineages BA.1, BA.2 and BA.383. The trees include 
SARS-CoV-2 genome sequences sampled in 2021 (N = 221) together with  
13 sequences representing the BA.1, BA.2 and BA.3 lineages. Whereas in trees 
for regions 1 and 3 BA.2 and BA.3 cluster together with high bootstrap support, 
BA.1 is a well-supported albeit more distantly related sibling lineage. The a 
897nt region 2 segment (encoding the N-terminal domain of spike) includes  
67 polymorphic sites with a maximum 8nt difference between strains, showing 

little bootstrap support for any sibling or clade relationships except the 
membership of certain viruses in WHO-designated clades (Lambda, Omicron, 
Gamma). Despite Omicron lineages BA.1 and BA.3 clustering with certain Delta 
and Eta viruses and Omicron BA.2 clustering with a distinct set of Delta viruses 
(all on the basis of several key nucleotide positions), trees based on region  
2 show no statistical support for the three Omicron lineages having distinct 
evolutionary origins. Bootstrap values are shown on branches with relevant 
values magnified for readability. All trees were rooted on the Wuhan-Hu-1 
sequence.
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Extended Data Table 1 | Parameter estimates from BEAST for the full South Africa and Botswana dataset and the reduced 
data set of only Gauteng Province genomes

95% HPD intervals in parentheses.



Extended Data Table 2 | Sites in the BA.1 sequences that have been subject to episodic diversifying selection
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Extended Data Table 3 | Prior distributions used for the BDSKY analyses

The becoming non-infectious rate was fixed to 36.5/year which corresponds to a mean infectious period of 10 days. A less informative prior for the sampling proportion was used for the Gaut-
eng Province only dataset to allow for the possibility of a higher province-specific sampling proportion.



Extended Data Table 4 | Time of most recent common ancestor, exponential growth rate and doubling time estimates for 
the full South Africa and Botswana dataset and the reduced dataset of only Gauteng Province genomes under the 3-epoch 
BDSKY model in which the sampling proportion was allowed to change at 3 equidistantly spaced time points

95% HPD intervals in parentheses.
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Extended Data Table 5 | Time of most recent common ancestor, exponential growth rate and doubling time estimates for 
the full South Africa and Botswana dataset and the reduced dataset of only Gauteng Province genomes under the 4-epoch 
BDSKY model in which the sampling proportion was allowed to change at 4 equidistantly spaced time points

95% HPD intervals in parentheses.
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