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Abstract

Background—Cluster randomized trials have been utilized to evaluate the effectiveness of
human immunodeficiency virus (HIV) prevention strategies on reducing incidence. Design of such
studies must take into account possible correlation of outcomes within randomized units.

Purpose—To discuss power and sample size considerations for cluster randomized trials of
combination HIV prevention, using an HIV prevention study in Botswana as an illustration.

Methods—We introduce a new agent-based model to simulate the community-level impact of a
combination prevention strategy and investigate how correlation structure within a community
affects the coefficient of variation—an essential parameter in designing a cluster randomized trial.

Results—We construct collections of sexual networks and then propagate HIV on them to
simulate the disease epidemic. Increasing level of sexual mixing between intervention and
standard of care communities reduces the difference in cumulative incidence in the two sets of
communities. Fifteen clusters per arm and 500 incidence cohort members per community provides
95% power to detect the projected difference in cumulative HIV incidence between standard of
care and intervention communities (3.93% and 2.34%) at the end of the third study year, using a
coefficient of variation 0.25. Although available formulas for calculating sample size for cluster
randomized trials can be derived by assuming an exchangeable correlation structure within
clusters, we show that deviations from this assumption do not generally affect the validity of such
formulas.

Limitations—We construct sexual networks based on data from Likoma Island, Malawi and base
disease progression on longitudinal estimates from an incidence cohort in Botswana and in Durban
as well as a household survey in Mochudi, Botswana. Network data from Botswana and larger
sample sizes to estimate rates of disease progression would be useful in assessing the robustness of
our model results.

Conclusions—Epidemic modeling plays a critical role in planning and evaluating interventions
for prevention. Simulation studies allow us to take into consideration available information on
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sexual network characteristics, such as mixing within and between communities as well as
coverage levels for different prevention modalities in the combination prevention package.

Keywords
cluster randomized trials; network models; design effect; HIV prevention

Background

Individual-level HIV prevention approaches, including antiretroviral treatment as prevention,
male circumcision, pre-exposure prophylaxis (in some populations) and preventing mother-
to-child transmission, have shown efficacy. Efforts are underway to investigate whether
combining them can achieve community-level control of HIV infection [1].

HIV incidence depends on subject-level factors, like risk behavior, and community-level
factors, like sexual network characteristics. To reduce the need for treatment, a modified
treatment as prevention approach that targets only high viral load carriers is part of a
combination prevention strategy that is under study in a cluster randomized trial in
Botswana. About 25% of new HIV-1 subtype C infections in southern Africa (where C is
most prevalent) maintain high viral load levels for at least 1-2 years and have faster cluster
of differentiation 4 (CD4) cell count decline [2,3]. Identifying and treating this subset can
both delay onset of acquired immunodeficiency syndrome (AIDS) and reduce HIV
transmissions [4].

Cluster randomized trials investigate both direct and indirect effects of prevention
interventions on infectious diseases [5,6]; design and sample size calculation must take into
account possible correlation of outcomes within randomized units. Sample size formula
make use of either intraclass correlation (p) or coefficient of variation (k) for this purpose
[7,8,9]. Simulation studies to estimate power have made use of a generalized linear mixed
model framework as the data generating model [10].

To address the well-known difficulties inherent in estimating Aand p [8,11,12], Hayes and
Bennett [7] recommend examining a range of plausible values of 4. Spiegelhalter [13]
proposes a Bayesian method to incorporate the use of prior opinion. Shih [14] suggests an
internal pilot study when feasible. Campbell et al. [15] review methods for dealing with the
uncertainty of p [16,17] in the planning stage.

In HIV prevention studies, sample size depends on the magnitude of intervention effect as
well as the HIV incidence in the control group, inaccurate estimates of which threaten
power. The Mema Kwa Vijana trial of HIV prevention in Tanzania [18] provides an example
of a negative study with lower than anticipated power. An additional threat arises from the
attenuating effect of sexual relations formed between individuals who reside in communities
randomized to different conditions. Hayes et al. [5] discuss a strategy to minimize such
contamination by using large, geographically defined clusters as randomization units and
individuals centrally located within each cluster as evaluation cohorts.
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This paper describes sample size considerations for cluster randomized trials of combination
HIV prevention, motivated by the design of a study in Botswana. We introduce a new agent-
based simulation model to simulate the impact of combination prevention strategy and the
coefficient of variation, taking into account different levels of the contamination effect. We
also investigate how correlation structure within a community affects & The sample size
formula we use can be derived from random effects models in which cluster-level effects are
assumed to be independent across clusters, as are individual outcomes within clusters. We
discuss the impact of deviations from the exchangeable-correlation assumption, which is
likely to be violated for the outcome of HIV infection; correlation between partners would
be expected to be higher than that between people who are distant in a sexual network but
reside within a community.

Methods

Study design overview

The Botswana study investigates whether implementation of a combination of prevention
interventions reduces HIV incidence. Villages in Botswana will be randomized into one of
the two arms:

A. “standard of care” with antiretroviral therapy for HIV-infected individuals
with CD4<350 cells/mm3 or AIDS;

B. antiretroviral therapy for the subjects above and for those with high viral
load (>10,000 copies/ml), enhanced HIV testing and counseling,
prevention of mother to child transmission, enhanced linkage of testing to
care, and male circumcision.

HIV incidence will be estimated from a cohort identified through a random sample of 20%
of households in each community that includes consenting eligible HIV-negative household
members who are citizens (or their spouses) between ages 16 to 64 and are able to provide
informed consent. Incidence cohort subjects are tested annually for HIV. Ease of logistics is
the reason for sampling of households rather than individuals. The choice of a 20% sample
represents a trade-off between adequacy of power and restriction of the attenuating effect of
home-based testing in standard of care communities. To improve efficiency, the Botswana
Study is qualitatively matched on population size, nature of health facilities, age structure,
and geographic location; there is no available information matching on predicted incidence,
which might be ideal.

Sample size determination

Sample size was calculated from a formula developed for matched cluster randomized trials
[19]:

omo(1 — mo) /mA4mi (1 — m1) /m+k3 (7§ +77)

c=2+(24/2+28) (mo—n )2
0— 1
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where cis the number of clusters per treatment arm, iy and 1 are the true proportions of
individuals who reach endpoint in the two arms; /7 is the number of sampled individuals
within each cluster, and z,/, and zg are the usual upper tail normal probabilities. &y, is the
coefficient of variation in true proportions between clusters within matched pairs in the
absence of intervention, and is defined as the standard deviation of the two proportions of
clusters within matched pairs divided by their mean.

To predict cumulative incidence over the study period in communities, we used an agent-
based epidemic model - a simulation of the actions and interactions of autonomous agents to
assess their effects on an entire system - to simulate the HIV spread on collections of
generated sexual networks. Parameter values in the model (see Table 1) were set based on
published results as well as information from three sources: (1) the Mochudi study, a pilot
study to evaluate the uptake of an HIV prevention program for the northeast sector of
Mochudi, a village in Botswana with a population of around 45,000 [20]; (2) the Botswana/
Durban cohort, a cohort of newly infected individuals combined from two southern African
cohorts: the HIV pathogenesis Programme Acute Infection Study in Durban, KwaZulu-
Natal, South Africa [21] and the Tshedimoso Study in Gaborone, Botswana [3,22,23]; and
(3) the Likoma Island sexual network, a cross-sectional sociocentric survey of sexual
partnerships aiming to investigate the population-level structure of sexual networks
connecting the young adult population of several villages on Likoma Island, Malawi [24].

Generation of sexual networks

In our models, the evolution of sexual relationships are represented as a dynamic network, in
which each node represents an individual (male or female), and each edge represents a
sexual relationship between nodes. The networks are bipartite and only represent relation-
ships between opposite genders, reflecting the fact that in Botswana heterosexual contact is
believed to be the principle mode of transmission [25] and homosexual contact is hard to
document. Each network represents all of the sexual relationships that occur in sets of
matched pairs of communities during the study. A schematic illustration of a static network
of 2 communities is provided in Figure 1.

In a sexual contact network, the number of edges adjacent to a particular node is called its
degree, and the degree distribution can be obtained by the collection of nodal degrees [26].
We construct degree distributions using a negative binomial distribution [27,28] based on
parameters (r=5, p=0.7, cutoff=7) estimated from the reported number of sexual partners in
four years from Likoma Island using a likehood approach.

Using the methods proposed in Goyal et al. [29] that permit incorporation of user-specified
uncertainty associated with particular network properties, we generate networks that are
consistent with both a prescribed degree sequence and the target distribution for mixing
between a pair of communities. A Metropolis-Hastings algorithm provides the basis for
generating a collection of networks that satisfy the probability distribution assigned to the
proportion of mixing across communities. The procedure constrains the degree distribution
by proposing only networks with the prescribed degree distribution and the accept-reject
probability ensures that the proportion of mixing across communities is consistent with the
target probability distribution specified by the investigator. The networks are generated
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assuming that the probability of forming a partnership does not depend on the total number
of partnerships of the two individuals or other personal characteristics. Relationship
durations, @, are drawn from a survival distribution estimated from self-reported relationship
start and end dates from the Mochudi study. A start date is drawn from a uniform
distribution on the interval from start of study minus d'to end of study; this ensures that the
relationship is present during the study period and avoids time trends in the number of
relationships. A histogram of the partnership durations and its corresponding Kaplan-Meier
estimates are given in Figure 2.

Simulation of the disease epidemic

In addition to data from the Mochudi study and the Botswana/Durban cohort, our model
takes into account community characteristics including population size, varying coverage
levels for different prevention modalities, as well as individual characteristics including
transmission risk, disease progression, condom use, linkage to care, and circumcision status.

At time 0, the start of the simulation, we set the initial condition for each community. Each
eligible individual is assigned an initial HIV infection status based on the current prevalence
in Botswana, estimated to be 24.8%, and independently of partnership characteristics or
position in the network. Each infected individual is assigned to a viral load category (<400,
400-3,499, 3,500-9,999, 10,000-49,999, or 50,000+ copies/ml) as well as an initial CD4
count based on estimates of their distributions from the household survey in Mochudi. For
CD4 counts below threshold for treatment, subjects are modeled as receiving antiretroviral
therapy according to estimates from Mochudi. Background antiretroviral therapy coverage
for CD4<350 cells/mm3 is set at 60.9% at the start based on a recent survey of the Mochudi
district in 2011. The percentage of condom use is set as 40% and male circumcision rate at
the start, at 12.7%, the estimated rate for Botswana [30]. The probability of transmitting to a
partner is based on the infected individual’s viral load category, awareness of infection
status, circumcision status, and treatment status, each of which is subject to change over
time. For example, as disease progresses, a subject’s CD4 count may decrease to levels
below threshold for treatment guidelines and therefore make the subject eligible for
treatment. Disease progression is assumed to follow estimates based on the Botswana/
Durban cohort and HIV is only transmitted to partners when their partnership is active.
Impact of viral load category on transmission risk is based on results reported in Quinn et al.
[31]; sensitivity analyses are performed using rates reported in Attia et al. [32] and Lingappa
et al. [33]. Reductions in transmission risks associated with knowing infection status and
with condom use are set as 30% and 85% and assumed to be independent. Reduction in HIV
acquisition risks for circumcision is set at 60%. We randomly pick 20% of the population in
each community to form the incidence cohort. Subjects in the incidence cohort are tested
annually for HIV infection, and subjects outside of this cohort are tested with probabilities
set to be the specified coverage levels for testing. The rates for male circumcision, HIV
testing and counseling and linkage to care (Table 1) are chosen to be the targeted levels for
the intervention communities and the current and anticipated levels for the standard of care
communities over the study period. These coverage levels are allowed to vary over time.
Therefore, the model allows assessment of the impact of a slower-than-expected intervention
roll-out. In the standard of care communities, subjects become eligible for treatment based
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on national treatment guidelines; in the intervention communities subjects identified as high
viral load carriers (>10,000 copies/ml) are also eligible for treatment.

Effect of within-cluster correlation structure on coefficient of variation

Although the sample size formula we used can be derived from models assuming an
exchangeable correlation structure within clusters, we find that deviations from this
assumption do not affect the validity of the sample size formula. When this assumption is
violated, the intraclass correlation p does not represent correlation between any two subjects
in the same cluster, but instead represents the average correlation of observations from the
same cluster. Even with arbitrary variance-covariance structure within cluster, the increase in
variance resulting from cluster sampling, commonly measured by the design effect [34], can
be expressed by a function of p and the number of subjects within cluster. The parameter &,
which provides equivalent information regarding variance inflation as the intraclass
correlation, captures the heterogeneity in outcomes across clusters resulting from the
correlations among subjects from the same cluster. To illustrate (see supplementary
materials), we consider the setting where we have c¢ clusters and sample 77 subjects within
each cluster. The variance-covariance matrix for the /m individuals within each cluster
conditional on cluster-level summary is arbitrary. We derive the formulas for p, kand the
design effect and show that to estimate these quantities, it is sufficient to use summary
measures from each cluster.

When departure from exchangeable correlation structure is expected, it is important that the
studies used to estimate A employ the same sampling strategy as will the proposed study.
Consider the case where outcomes of individuals within the same households are more
correlated than those of individuals from different households within the same community.
Assume that the sampling strategy is such that within each of the ¢ clusters, we randomly

sample ahouseholds and b;; subjects within each household. We assume that b;js are the
same across different clusters and suppress 7in the subsequent development.

The data generating process for a continuous outcome Y can be expressed as:

Yijr=p+oi+yj+eiji,

where /=1, ..., crepresents clusters, /=1, ..., arepresents households, and k=1, ..., &;

represents subjects. We assume that o;~N (0,07 .),7;~N (0,02, ),e5~N (0,02, ,)).

Although the subsequent development focuses on a continuous outcome, the results are
applicable to binary outcomes by considering the corresponding model: Let the probability

of successes in the ¢/ cluster be i, and p;~N (i, aic); let the probability of successes in

the jz/ households be vy j; and ;;|pi~N (p1:, aiH ). Within the /zh cluster and jt/ house-hold,
Yis - Y,-jbjare independently and identically distributed according to Bernoulli (v ;).

Under this model,
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If we sample one person per household, ;=1 for j=1, ..., 4, the coefficient of variation

a

k‘F%C; when we sample all eligible members in each household, 4;= 1,
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o

k

ki < ky if any of the b;’s > 1. The kestimated from sampling one person per household
would underestimate the & applicable to a study sampling entire households and could
therefore result in insufficient power.

Results

Effect of sexual mixing between communities

Sexual mixing between intervention and standard of care communities will tend to increase
incidence in intervention and decrease it in standard of care communities. Figure 3
illustrates the impact of increasing levels of mixing while holding other conditions fixed, the
effect of which is to make the cumulative incidences in two sets of communities more
similar. When the mixing level reaches 50%, implying that subjects are equally likely to
have partners within and outside of their community, the expected cumulative incidence
rates become similar.

Projected cumulative HIV incidence in standard of care versus intervention communities

Simulation of the impact of the combination prevention is based on input parameters listed
in Table 1. Self-reported data from the Mochudi study suggest that approximately 30% of
partnerships were formed outside of that community. Mixing between communities
randomized to the same intervention or between standard of care communities and those not
in the study does not attenuate intervention effects. Furthermore, many Mochudi residents
work in the nearby capital city Gaborone, the residence of a considerable number of outside
partners. By contrast most villages in the Botswana study are relatively far from major urban
centers. Therefore for our setting, we choose a lower level of mixing, 20%, with standard
error 2.5%. These choices imply that about 95% of sampled values will be between 15% to
25%. Table 2 below presents the projected cumulative HIV incidences in standard of care
and intervention communities over 3 years of follow-up.
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Projected coefficient of variation and study power

To obtain a simulated value of krelevant for a matched-pair design, we assign both
communities to standard of care, calculate a coefficient of variation for each pair, and then
take the average across many pairs, in our case across 1500 pairs, yielding a value of 0.08.
All clusters are assumed to have the same population sizes, initial conditions, and rates of
disease progression for infected subjects. These actually vary over communities, and
although matched pairs are intended to be quite similar in conditions, 0.08 serves as a lower
bound. To reflect possible heterogeneity in matched communities, we consider a range of
values of & from 0.08 to 0.35. Figure 4 displays the number of clusters and cluster sizes
needed to achieve >90% power to detect the projected difference in 3-year cumulative
incidences in standard of care and intervention communities. Note that mixing does not
affect simulated values of k< because both communities within a pair are assigned to standard
of care.

Fifteen clusters per arm and 500 incidence cohort members per community yields 99%
power to detect the anticipated difference in model-projected cumulative HIV incidence
between standard of care and intervention communities (3.93% vs. 2.34%; see Table 2) by
the end of the third study year, for A= 0.08 and 84% power for k= 0.35.

Sensitivity analyses

We perform sensitivity analyses for scenarios associated with varying model input
parameters that differ between standard of care and intervention communities, such as rates
of male circumcision, HIV testing and counseling, and/or linkage to care. Table 3 presents
model input parameters, resulting projected incidence rates and corresponding power for
selected settings. Settings 1-3 correspond to settings where only one set of these three
parameters is changed and setting 4 corresponds to the setting where all three are changed to
the values listed in this table. These settings are chosen to be lower than the values in Table
1 to reflect the possibility that the targeted coverage levels may not be reached. The
difference in these values between standard of care and intervention communities is in
general smaller to assess the associated power loss. As the coverage levels for male
circumcision, HIV testing and counseling, and/or linkage to care decrease, the incidence
rates increase as expected. Nevertheless, the planned sample size still achieves >80% power
for all the settings considered here for a kas large as 0.3.

Additional sensitivity analyses for scenarios associated with lower than projected treatment
effects and varying rates of losses to follow-up (see Figure 5) show that for the planned
sample size and & of 0.25 the study has >80% power to detect a reduction of 34% in the
cumulative incidence even with 20% loss to follow-up.

Discussion

Mathematical modeling plays a critical role in planning and evaluating treatment for

prevention [35] but requires investigation of underlying assumptions and impact of different
choices of input parameters and limitations [36]. We construct our sexual network based on
data from Likoma Island (no such data exist in Botswana), and base disease progression for
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incident cases and prevalent cases on longitudinal estimates from the fairly limited
Botswana/Durban incidence cohort (n=77) and the Mochudi study. The similarity of our
model estimates for the annual and cumulative incidence rates of the standard of care
communities to the projected estimates from the Joint United Nations Programme on HIV/
AIDS Spectrum model (http://www.unaids.org/en/dataanalysis/datatools/spectrumepp2013/)
provides reassurance about our results. Extensive analyses of sensitivity to lower-than-
projected treatment effects and varying rates of losses to follow-up (Figure 5) demonstrate
that, for the planned sample size and a & of 0.25, with a 20% losses to follow-up rate, the
study has >80% power to detect a reduction of 34% in the cumulative incidence in the
intervention arm compared to the standard of care arm (3.93%).

The data on relationship duration exhibit “heaping”, i.e., grouping around certain values
(e.g. integers) because subjects may round their responses. We know of no systematic
tendency to round up or down responses, but even if it exists, we expect no substantial effect
of heaping because the transmission probability per day is small. Patterns of sexual behavior
and networking vary across populations. Because sexual network structure information for
the communities under study are not available, we allow for considerably greater than
observed variation in network structures by sampling degree distribution from a negative
binomial distribution whose parameters were estimated from Likoma Island network data.

Our model did not incorporate different types of sexual relationships, e.g., regular and
casual, with different frequencies of sex and probability of condom usage; the assumption
that variation in these factors does not greatly impact on outcomes reflects limited available
information. The impact of the intervention could be affected by differential rates of
treatment uptake for people engaged in various types of relationships. The model also does
not specifically target concurrency metrics, about which little relevant data are available.
Some mathematical models imply an important role for concurrency, but correlation of
concurrency and incidence was not observed in rural South Africa [37].

Although our simulation study assigns initial infection status randomly among the
population, correlation may exist between HIV status and network properties. Further work
is necessary to properly account for this potential correlation. Data currently available from
Botswana are ego-centric, obviating the possibility of estimating the correlation. Using only
partnerships residing within the same household may produce biased estimates as multiple
partnerships are common in Botswana and many partners are not co-habiting. Ego-centric
data also limit our ability to estimate parameters associated with mixing by activity level.
Our model also assumes independence of knowledge of HIV infection status and sexual
practice due to lack of available information.

Our simulation model randomly samples individuals, but the Botswana study will enroll all
eligible members of randomly selected households. We expect the difference between the
two sampling strategies to be small because in Botswana, many sexual partners do not live
together, implying that correlation in HIV infection rates within household members may
not be higher than that between households. If this does not hold, the treatment effect
estimate from our model would not be affected, but the kassociated with household samples
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would likely be greater than that for samples of individuals. The potential power loss can be
assessed using the formula in the Methods section.

All HIV incident cases are modeled to arise from within the simulated pair of communities.
In the Botswana study, communities outside of the trial will receive standard of care. As it is
possible that there will be a greater uptake of services in the control arm compared to the
communities outside of the trial, sexual contacts with communities outside of the trial may
modestly increase incidence in the control arm. For the intervention communities, the effect
of mixing with outside communities should be mostly captured through our model of mixing
with the control communities, though the effect of this mixing could be slightly greater if
incidence is higher in the outside than in the control communities. We would expect only
modest effects of mixing with outside communities above and beyond the mixing across
study communities randomized to different conditions. Any increase in HIV incidence in
control communities will result in a larger treatment effect and greater power than projected.

The Botswana study is one of the two large HIV prevention trials commissioned by the
Presidents Emergency Plan For AIDS Relief that are currently underway. The other is HPTN
071 [38], which investigates a combination of interventions including universal testing,
counseling and antiretroviral therapy in Zambia and South Africa. A special feature of the
Botswana study is its focus on identifying high viral carriers and treating them with
antiretroviral therapy. Both studies rely on mathematical modeling to investigate the
plausibility of different intervention effect sizes. These models make use of information
from a wide variety of sources regarding biology and behavior information that will be
updated during the course of the studies and at their completion.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figurel.
A schematic illustration of a static network of 2 communities. Solid circles and open circles

represent individuals in different communities. Within each community, the location of
circles does not represent their geographical locations.
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Figure 2.

Histogram of relationship durations and the corresponding Kaplan-Meier estimates in
Mochudi.
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Cumulative incidence of intervention and standard of care (SOC) communities over the 3-
year period with varying levels of mixing, based on input parameters listed in Table 1 and
results from 1000 pairs of communities.

Clin Trials. Author manuscript; available in PMC 2015 September 20.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Wang et al.

Number of Clusters per Arm

40

30

20

10

Page 16

I I I I I I I
100 200 300 400 500 600 700

Cluster Size

Figure 4.
Number of clusters per arm versus cluster size needed to ensure >90% power to detect

anticipated differences in 3-year cumulative HIV incidence between standard of care
(3.93%) and intervention arms (2.34%), for varying coefficient of variation k.
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(b) 10% losses to follow—up

Proportion of Reduction in Cumulative Incidence

(d) 20% losses to follow—up

Proportion of Reduction in Cumulative Incidence

Power to detect varying potential reductions of intervention effect in 3-year cumulative HIV

incidence with varying rates of losses to follow-up.
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Table 2

Projected cumulative HIV incidence in standard of care versus intervention communities over 3 years of study
follow-up, based on results from 1500 pairs of communities.

Standard of Care Intervention

Cumulative Incidence CumulativeIncidence % Reduction

End of Yearl 1.74% 1.42% 18.4%
End of Year2 2.98% 1.99% 33.2%
End of Year3 3.93% 2.34% 40.5%
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