The World Health Organization plans to eliminate hepatitis B and C Infections by 2030. Therefore, there is a need to study and understand hepatitis B virus (HBV) epidemiology and viral evolution further, including evaluating occult (HBsAg-negative) HBV infection (OBI), given that such infections are frequently undiagnosed and rarely treated. We aimed to molecularly characterize HBV genomes from 108 individuals co-infected with human immunodeficiency virus (HIV) and chronic hepatitis B (CHB) or OBI identified from previous HIV studies conducted in Botswana from 2009 to 2012. Full-length (3.2 kb) and nearly full-length (~3 kb) genomes were amplified by nested polymerase chain reaction (PCR). Sequences from OBI participants were compared to sequences from CHB participants and GenBank references to identify OBI-unique mutations. HBV genomes from 50 (25 CHB and 25 OBI) individuals were successfully genotyped. Among OBI participants, subgenotype A1 was identified in 12 (48%), D3 in 12 (48%), and E in 1 (4%). A similar genotype distribution was observed in CHB participants. Whole HBV genome sequences from Botswana, representing OBI and CHB, were compared for the first time. There were 43 OBI-unique mutations, of which 26 were novel. Future studies using larger sample sizes and functional analysis of OBI-unique mutations are warranted.
Publications Date
Journal
Genes (Basel)
PMID
30205537
PMCID
PMC6162474
DOI
10.3390/genes9090453
Abstract